#!/usr/bin/perl -w # A perl Minimuf calculator, nicked from the minimuf program written in # C. # # Translated and modified for my own purposes by Dirk Koopman G1TLH # # as fixed by Steve Franke K9AN # # Copyright (c) 1999 Dirk Koopman G1TLH # # The original copyright:- #/*********************************************************************** # * * # * Copyright (c) David L. Mills 1994-1998 * # * * # * Permission to use, copy, modify, and distribute this software and * # * its documentation for any purpose and without fee is hereby * # * granted, provided that the above copyright notice appears in all * # * copies and that both the copyright notice and this permission * # * notice appear in supporting documentation, and that the name * # * University of Delaware not be used in advertising or publicity * # * pertaining to distribution of the software without specific, * # * written prior permission. The University of Delaware makes no * # * representations about the suitability this software for any * # * purpose. It is provided "as is" without express or implied * # * warranty. * # * * # *********************************************************************** # # MINIMUF 3.5 from QST December 1982 # (originally in BASIC) # # $Id$ # # package Minimuf; use POSIX; require Exporter; @ISA = qw(Exporter); @EXPORT = qw($pi $d2r $r2d $halfpi $pi2 $VOFL $R $hE $hF $GAMMA $LN10 $MINBETA $BOLTZ $NTEMP $DELTAF $MPATH $GLOSS $SLOSS $noise); use strict; use vars qw($VERSION $BRANCH); $VERSION = sprintf( "%d.%03d", q$Revision$ =~ /(\d+)\.(\d+)/ ); $BRANCH = sprintf( "%d.%03d", q$Revision$ =~ /\d+\.\d+\.(\d+)\.(\d+)/ || (0,0)); $main::build += $VERSION; $main::branch += $BRANCH; use vars qw($pi $d2r $r2d $halfpi $pi2 $VOFL $R $hE $hF $GAMMA $LN10 $MINBETA $BOLTZ $NTEMP $DELTAF $MPATH $GLOSS $SLOSS $noise); $pi = 3.141592653589; $d2r = ($pi/180); $r2d = (180/$pi); $halfpi = $pi/2; $pi2 = $pi*2; $VOFL = 2.9979250e8; # velocity of light $R = 6371.2; # radius of the Earth (km) $hE = 110; # mean height of E layer (km) $hF = 320; # mean height of F layer (km) $GAMMA = 1.42; # geomagnetic constant $LN10 = 2.302585; # natural logarithm of 10 $MINBETA = (10 * $d2r); # min elevation angle (rad) $BOLTZ = 1.380622e-23; # Boltzmann's constant $NTEMP = 290; # receiver noise temperature (K) $DELTAF = 2500; # communication bandwidth (Hz) $MPATH = 3; # multipath threshold (dB) $GLOSS = 3; # ground-reflection loss (dB) $SLOSS = 10; # excess system loss $noise = 10 * log10($BOLTZ * $NTEMP * $DELTAF) + 30; # basic SGN function sub SGN { my $x = shift; return 0 if $x == 0; return ($x > 0) ? 1 : -1; } # # MINIMUF 3.5 (From QST December 1982, originally in BASIC) # sub minimuf { my $flux = shift; # 10-cm solar flux my $month = shift; # month of year (1 - 12) my $day = shift; # day of month (1 - 31) my $hour = shift; # hour of day (utc) (0 - 23) my $lat1 = shift; # transmitter latitude (deg n) my $lon1 = shift; # transmitter longitude (deg w) my $lat2 = shift; # receiver latitude (deg n) my $lon2 = shift; # receiver longitude (deg w) my $ssn; # sunspot number dervived from flux my $muf; # maximum usable frequency my $dist; # path angle (rad) my ($a, $p, $q); # unfathomable local variables my ($y1, $y2, $y3); my ($t, $t4, $t9); my ($g0, $g8); my ($k1, $k6, $k8, $k9); my ($m9, $c0); my ($ftemp, $gtemp); # volatile temps # Determine geometry and invariant coefficients $ssn = spots($flux); $ftemp = sin($lat1) * sin($lat2) + cos($lat1) * cos($lat2) * cos($lon2 - $lon1); $ftemp = -1 if ($ftemp < -1); $ftemp = 1 if ($ftemp > 1); $dist = acos($ftemp); $k6 = 1.59 * $dist; $k6 = 1 if ($k6 < 1); $p = sin($lat2); $q = cos($lat2); $a = (sin($lat1) - $p * cos($dist)) / ($q * sin($dist)); $y1 = 0.0172 * (10 + ($month - 1) * 30.4 + $day); $y2 = 0.409 * cos($y1); $ftemp = 2.5 * $dist / $k6; $ftemp = $halfpi if ($ftemp > $halfpi); $ftemp = sin($ftemp); $m9 = 1 + 2.5 * $ftemp * sqrt($ftemp); $muf = 100; # Loop along path for ($k1 = 1 / (2 * $k6); $k1 <= 1 - 1 / (2 * $k6); $k1 += abs(0.9999 - 1 / $k6)) { $gtemp = $dist * $k1; $ftemp = $p * cos($gtemp) + $q * sin($gtemp) * $a; $ftemp = -1 if ($ftemp < -1); $ftemp = 1 if ($ftemp > 1); $y3 = $halfpi - acos($ftemp); $ftemp = (cos($gtemp) - $ftemp * $p) / ($q * sqrt(1 - $ftemp * $ftemp)); $ftemp = -1 if ($ftemp < -1); $ftemp = 1 if ($ftemp > 1); $ftemp = $lon2 + SGN(sin($lon1 - $lon2)) * acos($ftemp); $ftemp += $pi2 if ($ftemp < 0); $ftemp -= $pi2 if ($ftemp >= $pi2); $ftemp = 3.82 * $ftemp + 12 + 0.13 * (sin($y1) + 1.2 * sin(2 * $y1)); $k8 = $ftemp - 12 * (1 + SGN($ftemp - 24)) * SGN(abs($ftemp - 24)); if (cos($y3 + $y2) <= -0.26) { $k9 = 0; $g0 = 0; } else { $ftemp = (-0.26 + sin($y2) * sin($y3)) / (cos($y2) * cos($y3) + 0.001); $k9 = 12 - atan($ftemp / sqrt(abs(1 - $ftemp * $ftemp))) * 7.639437; $t = $k8 - $k9 / 2 + 12 * (1 - SGN($k8 - $k9 / 2)) * SGN(abs($k8 - $k9 / 2)); $t4 = $k8 + $k9 / 2 - 12 * (1 + SGN($k8 + $k9 / 2 - 24)) * SGN(abs($k8 + $k9 / 2 - 24)); $c0 = abs(cos($y3 + $y2)); $t9 = 9.7 * pow($c0, 9.6); $t9 = 0.1 if ($t9 < 0.1); $g8 = $pi * $t9 / $k9; if (($t4 < $t && ($hour - $t4) * ($t - $hour) > 0.) || ($t4 >= $t && ($hour - $t) * ($t4 - $hour) <= 0)) { $ftemp = $hour + 12 * (1 + SGN($t4 - $hour)) * SGN(abs($t4 - $hour)); $ftemp = ($t4 - $ftemp) / 2; $g0 = $c0 * ($g8 * (exp(-$k9 / $t9) + 1)) * exp($ftemp) / (1 + $g8 * $g8); } else { $ftemp = $hour + 12 * (1 + SGN($t - $hour)) * SGN(abs($t - $hour)); $gtemp = $pi * ($ftemp - $t) / $k9; $ftemp = ($t - $ftemp) / $t9; $g0 = $c0 * (sin($gtemp) + $g8 * (exp($ftemp) - cos($gtemp))) / (1 + $g8 * $g8); $ftemp = $c0 * ($g8 * (exp(-$k9 / $t9) + 1)) * exp(($k9 - 24) / 2) / (1 + $g8 * $g8); $g0 = $ftemp if ($g0 < $ftemp); } } $ftemp = (1 + $ssn / 250) * $m9 * sqrt(6 + 58 * sqrt($g0)); $ftemp *= 1 - 0.1 * exp(($k9 - 24) / 3); $ftemp *= 1 + 0.1 * (1 - SGN($lat1) * SGN($lat2)); $ftemp *= 1 - 0.1 * (1 + SGN(abs(sin($y3)) - cos($y3))); $muf = $ftemp if ($ftemp < $muf); } return $muf; } # # spots(flux) - Routine to map solar flux to sunspot number. # # THis routine was done by eyeball and graph on p. 22-6 of the 1991 # ARRL Handbook. The nice curve fitting was done using Mathematica. # sub spots { my $flux = shift; # 10-cm solar flux my $ftemp; # double temp return 0 if ($flux < 65); if ($flux < 110) { $ftemp = $flux - 200.6; $ftemp = 108.36 - .005896 * $ftemp * $ftemp; } elsif ($flux < 213) { $ftemp = 60 + 1.0680 * ($flux - 110); } else { $ftemp = $flux - 652.9; $ftemp = 384.0 - 0.0011059 * $ftemp * $ftemp; } return $ftemp; } # ion - determine paratmeters for hop h # # This routine determines the reflection zones for each hop along the # path and computes the minimum F-layer MUF, maximum E-layer MUF, # ionospheric absorption factor and day/night flags for the entire # path. sub ion { my $h = shift; # hop index my $d = shift; # path angle (rad) my $fcF = shift; # F-layer critical frequency my $ssn = shift; # current sunspot number my $lat1 = shift; my $lon1 = shift; my $b1 = shift; my $b2 = shift; my $lats = shift; my $lons = shift; # various refs to arrays my $daynight = shift; # ref to daynight array one per hop my $mufE = shift; my $mufF = shift; my $absorp = shift; my $beta; # elevation angle (rad) my $psi; # sun zenith angle (rad) my $dhop; # hop angle / 2 (rad) my $dist; # path angle (rad) my $phiF; # F-layer angle of incidence (rad) my $phiE; # E-layer angle of incidence (rad) my $fcE; # E-layer critical frequency (MHz) my $ftemp; # double temp # Determine the path geometry, E-layer angle of incidence and # minimum F-layer MUF. The F-layer MUF is determined from the # F-layer critical frequency previously calculated by MINIMUF # 3.5 and the secant law and so depends only on the F-layer # angle of incidence. This is somewhat of a crock; however, # doing it with MINIMUF 3.5 on a hop-by-hop basis results in # rather serious errors. $dhop = $d / ($h * 2); $beta = atan((cos($dhop) - $R / ($R + $hF)) / sin($dhop)); $ftemp = $R * cos($beta) / ($R + $hE); $phiE = atan($ftemp / sqrt(1 - $ftemp * $ftemp)); $ftemp = $R * cos($beta) / ($R + $hF); $phiF = atan($ftemp / sqrt(1 - $ftemp * $ftemp)); $absorp->[$h] = $mufE->[$h] = $daynight->[$h] = 0; $mufF->[$h] = $fcF / cos($phiF);; for ($dist = $dhop; $dist < $d; $dist += $dhop * 2) { # Calculate the E-layer critical frequency and MUF. $fcE = 0; $psi = zenith($dist, $lat1, $lon1, $b1, $b2, $lats, $lons); $ftemp = cos($psi); $fcE = .9 * pow((180. + 1.44 * $ssn) * $ftemp, .25) if ($ftemp > 0); $fcE = .005 * $ssn if ($fcE < .005 * $ssn); $ftemp = $fcE / cos($phiE); $mufE->[$h] = $ftemp if ($ftemp > $mufE->[$h]); # Calculate ionospheric absorption coefficient and # day/night indicators. Note that some hops along a # path can be in daytime and others in nighttime. $ftemp = $psi; if ($ftemp > 100.8 * $d2r) { $ftemp = 100.8 * $d2r; $daynight->[$h] |= 2; } else { $daynight->[$h] |= 1; } $ftemp = cos(90. / 100.8 * $ftemp); $ftemp = 0. if ($ftemp < 0.); $ftemp = (1. + .0037 * $ssn) * pow($ftemp, 1.3); $ftemp = .1 if ($ftemp < .1); $absorp->[$h] += $ftemp; } } # # pathloss(freq, hop) - Compute receive power for given path. # # This routine determines which of the three ray paths determined # previously are usable. It returns the hop index of the best of these # or zero if none are found. sub pathloss { my $hop = shift; # minimum hops my $freq = shift; # frequency my $txpower = shift || 20; # transmit power my $rsens = shift || -123; # receiver sensitivity my $antgain = shift || 0; # antenna gain my $daynight = shift; # ref to daynight array one per hop my $beta = shift; my $path = shift; my $mufF = shift; my $mufE = shift; my $absorp = shift; my $dB2 = shift; my $h; # hop number my $level; # max signal (dBm) my $signal; # receive signal (dBm) my $ftemp; # double temp my $j; # index temp # # Calculate signal and noise for all hops. The noise level is # -140 dBm for a receiver bandwidth of 2500 Hz and noise # temperature 290 K. The receiver sensitivity is assumed -123 # dBm (0.15 V at 50 Ohm for 10 dB S/N). Paths where the signal # is less than the noise or when the frequency exceeds the F- # layer MUF are considered unusable. $level = $noise; $j = 0; for ($h = $hop; $h < $hop + 3; $h++) { $daynight->[$h] &= ~(4 | 8 | 16); if ($freq < 0.85 * $mufF->[$h]) { # Transmit power (dBm) $signal = $txpower + $antgain + 30; # Path loss $signal -= 32.44 + 20 * log10($path->[$h] * $freq) + $SLOSS; # Ionospheric loss $ftemp = $R * cos($beta->[$h]) / ($R + $hE); $ftemp = atan($ftemp / sqrt(1 - $ftemp * $ftemp)); $signal -= 677.2 * $absorp->[$h] / cos($ftemp) / (pow(($freq + $GAMMA), 1.98) + 10.2); # Ground reflection loss $signal -= $h * $GLOSS; $dB2->[$h] = $signal; # Paths where the signal is greater than the # noise, but less than the receiver sensitivity # are marked 's'. Paths below the E-layer MUF # are marked 'e'. When comparing for maximum # signal, The signal for these paths is reduced # by 3 dB so they will be used only as a last # resort. $daynight->[$h] |= 4 if ($signal < $rsens); if ($freq < $mufE->[$h]) { $daynight->[$h] |= 8; $signal -= $MPATH; } if ($signal > $level) { $level = $signal; $j = $h; } } } # We have found the best path. If this path is less than 3 dB # above the RMS sum of the other paths, the path is marked 'm'. return 0 if ($j == 0); $ftemp = 0; for ($h = $hop; $h < $hop + 3; $h++) { $ftemp += exp(2 / 10 * $dB2->[$h] * $LN10) if ($h != $j); } $ftemp = 10 / 2 * log10($ftemp); $daynight->[$j] |= 16 if ($level < $ftemp + $MPATH); return $j; } # zenith(dist) - Determine sun zenith angle at reflection zone. sub zenith { my $dist = shift; # path angle my $txlat = shift; # tx latitude (rad) my $txlong = shift; # tx longitude (rad) my $txbearing = shift; # tx bearing my $pathangle = shift; # 'b1' my $lats = shift; # subsolar latitude my $lons = shift; # subsolar longitude my ($latr, $lonr); # reflection zone coordinates (rad) my $thetar; # reflection zone angle (rad) my $psi; # sun zenith angle (rad) # Calculate reflection zone coordinates. $latr = acos(cos($dist) * sin($txlat) + sin($dist) * cos($txlat) * cos($txbearing)); $latr += $pi if ($latr < 0); $latr = $halfpi - $latr; $lonr = acos((cos($dist) - sin($latr) * sin($txlat)) / (cos($latr) * cos($txlat))); $lonr += $pi if ($lonr < 0); $lonr = - $lonr if ($pathangle < 0); $lonr = $txlong - $lonr; $lonr -= $pi2 if ($lonr >= $pi); $lonr += $pi2 if ($lonr <= -$pi); $thetar = $lons - $lonr; $thetar = $pi2 - $thetar if ($thetar > $pi); $thetar -= $pi2 if ($thetar < - $pi); # Calculate sun zenith angle. $psi = acos(sin($latr) * sin($lats) + cos($latr) * cos($lats) * cos($thetar)); $psi += $pi if ($psi < 0); return($psi); } # official minimuf version of display sub dsx { my $h = shift; my $rsens = shift; my $dB2 = shift; my $daynight = shift; my $c1; my $c2; return " " unless $h; if (($daynight->[$h] & 3) == 3) { $c1 = 'x'; } elsif ($daynight->[$h] & 1) { $c1 = 'j'; } elsif ($daynight->[$h] & 2) { $c1 = 'n'; } if ($daynight->[$h] & 4) { $c2 = 's'; } elsif ($daynight->[$h] & 16) { $c2 = 'm'; } else { $c2 = ' '; } return sprintf("%4.0f%s%1d%s", $dB2->[$h] - $rsens, $c1, $h, $c2) } # my version sub ds { my $h = shift; my $rsens = shift; my $dB2 = shift; my $daynight = shift; my $c2; return " " unless $h; if ($daynight->[$h] & 4) { $c2 = 's'; } elsif ($daynight->[$h] & 16) { $c2 = 'm'; } else { $c2 = ' '; } my $l = $dB2->[$h] - $rsens; my $s = int $l / 6; $s = 9 if $s > 9; $s = 0 if $s < 0; my $plus = (($l / 6) >= $s + 0.5) ? '+' : ' '; return "$c2". "S$s$plus"; } 1;