/* * util/netevent.c - event notification * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains event notification functions. */ #include "util/netevent.h" #include "util/log.h" #include "util/fptr_wlist.h" /* -------- Start of local definitions -------- */ /** The TCP reading or writing query timeout in seconds */ #define TCP_QUERY_TIMEOUT 120 /* We define libevent structures here to hide the libevent stuff. */ #ifdef USE_MINI_EVENT #include "util/mini_event.h" #else /* we use libevent */ #include #endif /** * The internal event structure for keeping libevent info for the event. * Possibly other structures (list, tree) this is part of. */ struct internal_event { /** libevent event type, alloced here */ struct event ev; }; /** * Internal base structure, so that every thread has its own events. */ struct internal_base { /** libevent event_base type. */ struct event_base* base; }; /** * Internal timer structure, to store timer event in. */ struct internal_timer { /** libevent event type, alloced here */ struct event ev; /** is timer enabled */ uint8_t enabled; }; /** * Internal signal structure, to store signal event in. */ struct internal_signal { /** libevent event type, alloced here */ struct event ev; /** next in signal list */ struct internal_signal* next; }; /** create a tcp handler with a parent */ static struct comm_point* comm_point_create_tcp_handler( struct comm_base *base, struct comm_point* parent, size_t bufsize, comm_point_callback_t* callback, void* callback_arg); /* -------- End of local definitions -------- */ struct comm_base* comm_base_create() { struct comm_base* b = (struct comm_base*)calloc(1, sizeof(struct comm_base)); if(!b) return NULL; b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base)); if(!b->eb) { free(b); return NULL; } b->eb->base = event_init(); if(!b->eb->base) { free(b->eb); free(b); return NULL; } verbose(VERB_ALGO, "libevent %s uses %s method.", event_get_version(), event_get_method()); return b; } void comm_base_delete(struct comm_base* b) { if(!b) return; #ifdef HAVE_EVENT_BASE_FREE /* only libevent 1.2+ has it */ event_base_free(b->eb->base); #endif /* HAVE_EVENT_BASE_FREE */ b->eb->base = NULL; free(b->eb); free(b); } void comm_base_dispatch(struct comm_base* b) { int retval; retval = event_base_dispatch(b->eb->base); if(retval != 0) { fatal_exit("event_dispatch returned error %d, " "errno is %s", retval, strerror(errno)); } } void comm_base_exit(struct comm_base* b) { if(event_base_loopexit(b->eb->base, NULL) != 0) { log_err("Could not loopexit"); } } /** send a UDP reply */ int comm_point_send_udp_msg(struct comm_point *c, ldns_buffer* packet, struct sockaddr* addr, socklen_t addrlen) { ssize_t sent; log_assert(c->fd != -1); log_assert(ldns_buffer_remaining(packet) > 0); log_assert(addr && addrlen > 0); sent = sendto(c->fd, ldns_buffer_begin(packet), ldns_buffer_remaining(packet), 0, addr, addrlen); if(sent == -1) { verbose(VERB_OPS, "sendto failed: %s", strerror(errno)); return 0; } else if((size_t)sent != ldns_buffer_remaining(packet)) { log_err("sent %d in place of %d bytes", (int)sent, (int)ldns_buffer_remaining(packet)); return 0; } return 1; } /** if no CMSG_LEN (Solaris 9) define something reasonable for one element */ #ifndef CMSG_LEN #define CMSG_LEN(x) (sizeof(struct cmsghdr)+(x)) #endif /** print debug ancillary info */ void p_ancil(const char* str, struct comm_reply* r) { #if defined(AF_INET6) && defined(IPV6_PKTINFO) if(r->srctype != 4 && r->srctype != 6) { log_info("%s: unknown srctype %d", str, r->srctype); return; } if(r->srctype == 6) { char buf[1024]; if(inet_ntop(AF_INET6, &r->pktinfo.v6info.ipi6_addr, buf, (socklen_t)sizeof(buf)) == 0) { strncpy(buf, "(inet_ntop error)", sizeof(buf)); } buf[sizeof(buf)-1]=0; log_info("%s: %s %d", str, buf, r->pktinfo.v6info.ipi6_ifindex); } else if(r->srctype == 4) { #ifdef IP_RECVDSTADDR char buf1[1024]; if(inet_ntop(AF_INET, &r->pktinfo.v4addr, buf1, (socklen_t)sizeof(buf1)) == 0) { strncpy(buf1, "(inet_ntop error)", sizeof(buf1)); } buf1[sizeof(buf1)-1]=0; log_info("%s: %s", str, buf1); #elif defined(IP_PKTINFO) char buf1[1024], buf2[1024]; if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_addr, buf1, (socklen_t)sizeof(buf1)) == 0) { strncpy(buf1, "(inet_ntop error)", sizeof(buf1)); } buf1[sizeof(buf1)-1]=0; if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_spec_dst, buf2, (socklen_t)sizeof(buf2)) == 0) { strncpy(buf2, "(inet_ntop error)", sizeof(buf2)); } buf2[sizeof(buf2)-1]=0; log_info("%s: %d %s %s", str, r->pktinfo.v4info.ipi_ifindex, buf1, buf2); #endif } #endif } /** send a UDP reply over specified interface*/ int comm_point_send_udp_msg_if(struct comm_point *c, ldns_buffer* packet, struct sockaddr* addr, socklen_t addrlen, struct comm_reply* r) { #if defined(AF_INET6) && defined(IPV6_PKTINFO) ssize_t sent; struct msghdr msg; struct iovec iov[1]; char control[256]; #ifndef S_SPLINT_S struct cmsghdr *cmsg; #endif /* S_SPLINT_S */ log_assert(c->fd != -1); log_assert(ldns_buffer_remaining(packet) > 0); log_assert(addr && addrlen > 0); msg.msg_name = addr; msg.msg_namelen = addrlen; iov[0].iov_base = ldns_buffer_begin(packet); iov[0].iov_len = ldns_buffer_remaining(packet); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = control; #ifndef S_SPLINT_S msg.msg_controllen = sizeof(control); #endif /* S_SPLINT_S */ msg.msg_flags = 0; #ifndef S_SPLINT_S cmsg = CMSG_FIRSTHDR(&msg); if(r->srctype == 4) { #ifdef IP_RECVDSTADDR cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_RECVDSTADDR; memmove(CMSG_DATA(cmsg), &r->pktinfo.v4addr, sizeof(struct in_addr)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr)); #elif defined(IP_PKTINFO) cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_PKTINFO; memmove(CMSG_DATA(cmsg), &r->pktinfo.v4info, sizeof(struct in_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo)); #endif } else if(r->srctype == 6) { cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; memmove(CMSG_DATA(cmsg), &r->pktinfo.v6info, sizeof(struct in6_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); } else { /* try to pass all 0 to use default route */ cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; memset(CMSG_DATA(cmsg), 0, sizeof(struct in6_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); } msg.msg_controllen = cmsg->cmsg_len; #endif /* S_SPLINT_S */ if(verbosity >= VERB_ALGO) p_ancil("send_udp over interface", r); sent = sendmsg(c->fd, &msg, 0); if(sent == -1) { verbose(VERB_OPS, "sendmsg failed: %s", strerror(errno)); return 0; } else if((size_t)sent != ldns_buffer_remaining(packet)) { log_err("sent %d in place of %d bytes", (int)sent, (int)ldns_buffer_remaining(packet)); return 0; } return 1; #else log_err("sendmsg: IPV6_PKTINFO not supported"); return 0; #endif } void comm_point_udp_ancil_callback(int fd, short event, void* arg) { #if defined(AF_INET6) && defined(IPV6_PKTINFO) struct comm_reply rep; struct msghdr msg; struct iovec iov[1]; ssize_t recv; char ancil[256]; #ifndef S_SPLINT_S struct cmsghdr* cmsg; #endif /* S_SPLINT_S */ rep.c = (struct comm_point*)arg; log_assert(rep.c->type == comm_udp); if(!(event&EV_READ)) return; log_assert(rep.c && rep.c->buffer && rep.c->fd == fd); ldns_buffer_clear(rep.c->buffer); rep.addrlen = (socklen_t)sizeof(rep.addr); log_assert(fd != -1); log_assert(ldns_buffer_remaining(rep.c->buffer) > 0); msg.msg_name = &rep.addr; msg.msg_namelen = (socklen_t)sizeof(rep.addr); iov[0].iov_base = ldns_buffer_begin(rep.c->buffer); iov[0].iov_len = ldns_buffer_remaining(rep.c->buffer); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = ancil; #ifndef S_SPLINT_S msg.msg_controllen = sizeof(ancil); #endif /* S_SPLINT_S */ msg.msg_flags = 0; recv = recvmsg(fd, &msg, 0); if(recv == -1) { if(errno != EAGAIN && errno != EINTR) { log_err("recvmsg failed: %s", strerror(errno)); } return; } rep.addrlen = msg.msg_namelen; ldns_buffer_skip(rep.c->buffer, recv); ldns_buffer_flip(rep.c->buffer); rep.srctype = 0; #ifndef S_SPLINT_S for(cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if( cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_PKTINFO) { rep.srctype = 6; memmove(&rep.pktinfo.v6info, CMSG_DATA(cmsg), sizeof(struct in6_pktinfo)); break; #ifdef IP_RECVDSTADDR } else if( cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_RECVDSTADDR) { rep.srctype = 4; memmove(&rep.pktinfo.v4addr, CMSG_DATA(cmsg), sizeof(struct in_addr)); break; #elif defined(IP_PKTINFO) } else if( cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_PKTINFO) { rep.srctype = 4; memmove(&rep.pktinfo.v4info, CMSG_DATA(cmsg), sizeof(struct in_pktinfo)); break; #endif } } if(verbosity >= VERB_ALGO) p_ancil("receive_udp on interface", &rep); #endif /* S_SPLINT_S */ log_assert(fptr_whitelist_comm_point(rep.c->callback)); if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) { /* send back immediate reply */ (void)comm_point_send_udp_msg_if(rep.c, rep.c->buffer, (struct sockaddr*)&rep.addr, rep.addrlen, &rep); } #else fatal_exit("recvmsg: No support for IPV6_PKTINFO. " "Please disable interface-automatic"); #endif } void comm_point_udp_callback(int fd, short event, void* arg) { struct comm_reply rep; ssize_t recv; rep.c = (struct comm_point*)arg; log_assert(rep.c->type == comm_udp); if(!(event&EV_READ)) return; log_assert(rep.c && rep.c->buffer && rep.c->fd == fd); ldns_buffer_clear(rep.c->buffer); rep.addrlen = (socklen_t)sizeof(rep.addr); log_assert(fd != -1); log_assert(ldns_buffer_remaining(rep.c->buffer) > 0); recv = recvfrom(fd, ldns_buffer_begin(rep.c->buffer), ldns_buffer_remaining(rep.c->buffer), 0, (struct sockaddr*)&rep.addr, &rep.addrlen); if(recv == -1) { if(errno != EAGAIN && errno != EINTR) { log_err("recvfrom failed: %s", strerror(errno)); } return; } ldns_buffer_skip(rep.c->buffer, recv); ldns_buffer_flip(rep.c->buffer); rep.srctype = 0; log_assert(fptr_whitelist_comm_point(rep.c->callback)); if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) { /* send back immediate reply */ (void)comm_point_send_udp_msg(rep.c, rep.c->buffer, (struct sockaddr*)&rep.addr, rep.addrlen); } } /** Use a new tcp handler for new query fd, set to read query */ static void setup_tcp_handler(struct comm_point* c, int fd) { log_assert(c->type == comm_tcp); log_assert(c->fd == -1); ldns_buffer_clear(c->buffer); c->tcp_is_reading = 1; c->tcp_byte_count = 0; comm_point_start_listening(c, fd, TCP_QUERY_TIMEOUT); } void comm_point_tcp_accept_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg, *c_hdl; int new_fd; log_assert(c->type == comm_tcp_accept); if(!(event & EV_READ)) { log_info("ignoring tcp accept event %d", (int)event); return; } /* find free tcp handler. */ if(!c->tcp_free) { log_warn("accepted too many tcp, connections full"); return; } /* accept incoming connection. */ c_hdl = c->tcp_free; c_hdl->repinfo.addrlen = (socklen_t)sizeof(c_hdl->repinfo.addr); log_assert(fd != -1); new_fd = accept(fd, (struct sockaddr*)&c_hdl->repinfo.addr, &c_hdl->repinfo.addrlen); if(new_fd == -1) { /* EINTR is signal interrupt. others are closed connection. */ if( errno != EINTR && errno != EWOULDBLOCK && errno != ECONNABORTED #ifdef EPROTO && errno != EPROTO #endif /* EPROTO */ ) return; log_err("accept failed: %s", strerror(errno)); return; } /* grab the tcp handler buffers */ c->tcp_free = c_hdl->tcp_free; if(!c->tcp_free) { /* stop accepting incoming queries for now. */ comm_point_stop_listening(c); } /* addr is dropped. Not needed for tcp reply. */ setup_tcp_handler(c_hdl, new_fd); } /** Make tcp handler free for next assignment */ static void reclaim_tcp_handler(struct comm_point* c) { log_assert(c->type == comm_tcp); comm_point_close(c); if(c->tcp_parent) { c->tcp_free = c->tcp_parent->tcp_free; c->tcp_parent->tcp_free = c; if(!c->tcp_free) { /* re-enable listening on accept socket */ comm_point_start_listening(c->tcp_parent, -1, -1); } } } /** do the callback when writing is done */ static void tcp_callback_writer(struct comm_point* c) { log_assert(c->type == comm_tcp); ldns_buffer_clear(c->buffer); if(c->tcp_do_toggle_rw) c->tcp_is_reading = 1; c->tcp_byte_count = 0; comm_point_stop_listening(c); if(c->tcp_parent) /* for listening socket */ reclaim_tcp_handler(c); else /* its outgoing socket, start listening for reading */ comm_point_start_listening(c, -1, -1); } /** do the callback when reading is done */ static void tcp_callback_reader(struct comm_point* c) { log_assert(c->type == comm_tcp || c->type == comm_local); ldns_buffer_flip(c->buffer); if(c->tcp_do_toggle_rw) c->tcp_is_reading = 0; c->tcp_byte_count = 0; if(c->type == comm_tcp) comm_point_stop_listening(c); log_assert(fptr_whitelist_comm_point(c->callback)); if( (*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &c->repinfo) ) { comm_point_start_listening(c, -1, TCP_QUERY_TIMEOUT); } } /** Handle tcp reading callback. * @param fd: file descriptor of socket. * @param c: comm point to read from into buffer. * @param short_ok: if true, very short packets are OK (for comm_local). * @return: 0 on error */ static int comm_point_tcp_handle_read(int fd, struct comm_point* c, int short_ok) { ssize_t r; log_assert(c->type == comm_tcp || c->type == comm_local); if(!c->tcp_is_reading) return 0; log_assert(fd != -1); if(c->tcp_byte_count < sizeof(uint16_t)) { /* read length bytes */ r = read(fd, ldns_buffer_at(c->buffer, c->tcp_byte_count), sizeof(uint16_t)-c->tcp_byte_count); if(r == 0) return 0; else if(r == -1) { if(errno == EINTR || errno == EAGAIN) return 1; if(errno == ECONNRESET && verbosity < 2) return 0; /* silence reset by peer */ log_err("read (in tcp s): %s", strerror(errno)); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count != sizeof(uint16_t)) return 1; if(ldns_buffer_read_u16_at(c->buffer, 0) > ldns_buffer_capacity(c->buffer)) { verbose(VERB_DETAIL, "tcp: dropped larger than buffer"); return 0; } ldns_buffer_set_limit(c->buffer, ldns_buffer_read_u16_at(c->buffer, 0)); if(!short_ok && ldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) { verbose(VERB_DETAIL, "tcp: dropped bogus too short."); return 0; } verbose(VERB_ALGO, "Reading tcp query of length %d", (int)ldns_buffer_limit(c->buffer)); } log_assert(ldns_buffer_remaining(c->buffer) > 0); r = read(fd, ldns_buffer_current(c->buffer), ldns_buffer_remaining(c->buffer)); if(r == 0) { return 0; } else if(r == -1) { if(errno == EINTR || errno == EAGAIN) return 1; log_err("read (in tcp r): %s", strerror(errno)); return 0; } ldns_buffer_skip(c->buffer, r); if(ldns_buffer_remaining(c->buffer) <= 0) { tcp_callback_reader(c); } return 1; } /** * Handle tcp writing callback. * @param fd: file descriptor of socket. * @param c: comm point to write buffer out of. * @return: 0 on error */ static int comm_point_tcp_handle_write(int fd, struct comm_point* c) { ssize_t r; log_assert(c->type == comm_tcp); if(c->tcp_is_reading) return 0; log_assert(fd != -1); if(c->tcp_byte_count == 0 && c->tcp_check_nb_connect) { /* check for pending error from nonblocking connect */ /* from Stevens, unix network programming, vol1, 3rd ed, p450*/ int error = 0; socklen_t len = (socklen_t)sizeof(error); if(getsockopt(fd, SOL_SOCKET, SO_ERROR, &error, &len) < 0){ error = errno; /* on solaris errno is error */ } if(error == EINPROGRESS || error == EWOULDBLOCK) return 1; /* try again later */ if(error == ECONNREFUSED && verbosity < 2) return 0; /* silence 'connection refused' */ if(error != 0) { log_err("tcp connect: %s", strerror(error)); return 0; } } if(c->tcp_byte_count < sizeof(uint16_t)) { uint16_t len = htons(ldns_buffer_limit(c->buffer)); struct iovec iov[2]; iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count; iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count; iov[1].iov_base = ldns_buffer_begin(c->buffer); iov[1].iov_len = ldns_buffer_limit(c->buffer); log_assert(iov[0].iov_len > 0); log_assert(iov[1].iov_len > 0); r = writev(fd, iov, 2); if(r == -1) { if(errno == EINTR || errno == EAGAIN) return 1; log_err("tcp writev: %s", strerror(errno)); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count < sizeof(uint16_t)) return 1; ldns_buffer_set_position(c->buffer, c->tcp_byte_count - sizeof(uint16_t)); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); } return 1; } log_assert(ldns_buffer_remaining(c->buffer) > 0); r = write(fd, ldns_buffer_current(c->buffer), ldns_buffer_remaining(c->buffer)); if(r == -1) { if(errno == EINTR || errno == EAGAIN) return 1; log_err("tcp write: %s", strerror(errno)); return 0; } ldns_buffer_skip(c->buffer, r); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); } return 1; } void comm_point_tcp_handle_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg; log_assert(c->type == comm_tcp); if(event&EV_READ) { if(!comm_point_tcp_handle_read(fd, c, 0)) { reclaim_tcp_handler(c); if(!c->tcp_do_close) { log_assert(fptr_whitelist_comm_point( c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } } return; } if(event&EV_WRITE) { if(!comm_point_tcp_handle_write(fd, c)) { reclaim_tcp_handler(c); if(!c->tcp_do_close) { log_assert(fptr_whitelist_comm_point( c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } } return; } if(event&EV_TIMEOUT) { verbose(VERB_DETAIL, "tcp took too long, dropped"); reclaim_tcp_handler(c); if(!c->tcp_do_close) { log_assert(fptr_whitelist_comm_point(c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_TIMEOUT, NULL); } return; } log_err("Ignored event %d for tcphdl.", event); } void comm_point_local_handle_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg; log_assert(c->type == comm_local); if(event&EV_READ) { if(!comm_point_tcp_handle_read(fd, c, 1)) { log_assert(fptr_whitelist_comm_point(c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } return; } log_err("Ignored event %d for localhdl.", event); } void comm_point_raw_handle_callback(int ATTR_UNUSED(fd), short ATTR_UNUSED(event), void* arg) { struct comm_point* c = (struct comm_point*)arg; log_assert(c->type == comm_raw); (void)(*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, NULL); } struct comm_point* comm_point_create_udp(struct comm_base *base, int fd, ldns_buffer* buffer, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = fd; c->buffer = buffer; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_udp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add udp event"); comm_point_delete(c); return NULL; } return c; } struct comm_point* comm_point_create_udp_ancil(struct comm_base *base, int fd, ldns_buffer* buffer, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = fd; c->buffer = buffer; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_udp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_ancil_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add udp event"); comm_point_delete(c); return NULL; } return c; } static struct comm_point* comm_point_create_tcp_handler(struct comm_base *base, struct comm_point* parent, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = -1; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = (struct timeval*)malloc(sizeof(struct timeval)); if(!c->timeout) { ldns_buffer_free(c->buffer); free(c->ev); free(c); return NULL; } c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = parent; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_tcp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 1; c->tcp_check_nb_connect = 0; c->repinfo.c = c; c->callback = callback; c->cb_arg = callback_arg; /* add to parent free list */ c->tcp_free = parent->tcp_free; parent->tcp_free = c; /* libevent stuff */ evbits = EV_PERSIST | EV_READ; event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not basetset tcphdl event"); parent->tcp_free = c->tcp_free; free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_tcp(struct comm_base *base, int fd, int num, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; int i; /* first allocate the TCP accept listener */ if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = fd; c->buffer = NULL; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = num; c->tcp_handlers = (struct comm_point**)calloc((size_t)num, sizeof(struct comm_point*)); if(!c->tcp_handlers) { free(c->ev); free(c); return NULL; } c->tcp_free = NULL; c->type = comm_tcp_accept; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = NULL; c->cb_arg = NULL; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_accept_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add tcpacc event"); comm_point_delete(c); return NULL; } /* now prealloc the tcp handlers */ for(i=0; itcp_handlers[i] = comm_point_create_tcp_handler(base, c, bufsize, callback, callback_arg); if(!c->tcp_handlers[i]) { comm_point_delete(c); return NULL; } } return c; } struct comm_point* comm_point_create_tcp_out(struct comm_base *base, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = -1; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_tcp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 1; c->tcp_check_nb_connect = 1; c->repinfo.c = c; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_PERSIST | EV_WRITE; event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not basetset tcpout event"); ldns_buffer_free(c->buffer); free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_local(struct comm_base *base, int fd, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = fd; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = NULL; c->tcp_is_reading = 1; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_local; c->tcp_do_close = 0; c->do_not_close = 1; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; /* libevent stuff */ evbits = EV_PERSIST | EV_READ; event_set(&c->ev->ev, c->fd, evbits, comm_point_local_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add localhdl event"); free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_raw(struct comm_base* base, int fd, int writing, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->fd = fd; c->buffer = NULL; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_raw; c->tcp_do_close = 0; c->do_not_close = 1; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; /* libevent stuff */ if(writing) evbits = EV_PERSIST | EV_WRITE; else evbits = EV_PERSIST | EV_READ; event_set(&c->ev->ev, c->fd, evbits, comm_point_raw_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add rawhdl event"); free(c->ev); free(c); return NULL; } return c; } void comm_point_close(struct comm_point* c) { if(!c) return; if(c->fd != -1) if(event_del(&c->ev->ev) != 0) { log_err("could not event_del on close"); } /* close fd after removing from event lists, or epoll.. is messed up */ if(c->fd != -1 && !c->do_not_close) close(c->fd); c->fd = -1; } void comm_point_delete(struct comm_point* c) { if(!c) return; comm_point_close(c); if(c->tcp_handlers) { int i; for(i=0; imax_tcp_count; i++) comm_point_delete(c->tcp_handlers[i]); free(c->tcp_handlers); } free(c->timeout); if(c->type == comm_tcp || c->type == comm_local) ldns_buffer_free(c->buffer); free(c->ev); free(c); } void comm_point_set_cb_arg(struct comm_point* c, void *arg) { log_assert(c); c->cb_arg = arg; } void comm_point_send_reply(struct comm_reply *repinfo) { log_assert(repinfo && repinfo->c); if(repinfo->c->type == comm_udp) { if(repinfo->srctype) comm_point_send_udp_msg_if(repinfo->c, repinfo->c->buffer, (struct sockaddr*)&repinfo->addr, repinfo->addrlen, repinfo); else comm_point_send_udp_msg(repinfo->c, repinfo->c->buffer, (struct sockaddr*)&repinfo->addr, repinfo->addrlen); } else { comm_point_start_listening(repinfo->c, -1, TCP_QUERY_TIMEOUT); } } void comm_point_send_reply_iov(struct comm_reply* repinfo, struct iovec* iov, size_t iovlen) { log_assert(repinfo && repinfo->c); log_assert(repinfo->c->fd != -1); log_assert(repinfo->addrlen > 0); if(repinfo->c->type == comm_udp) { struct msghdr hdr; memset(&hdr, 0, sizeof(hdr)); hdr.msg_name = &repinfo->addr; hdr.msg_namelen = repinfo->addrlen; hdr.msg_iov = iov + 1; hdr.msg_iovlen = (TYPE_MSGIOVLEN)(iovlen - 1); /* note that number of characters sent is not checked. */ if(sendmsg(repinfo->c->fd, &hdr, 0) == -1) log_err("sendmsg: %s", strerror(errno)); } else { /* try if it can be sent in writev right now */ size_t i; uint16_t len = 0; ssize_t done; for(i=1; ic->fd, iov, (int)iovlen)) == -1) { #ifdef S_SPLINT_S /* don't complain about returning stack references */ iov[0].iov_base = NULL; #endif if(errno != EINTR && errno != EAGAIN) { log_err("writev: %s", strerror(errno)); comm_point_drop_reply(repinfo); return; } done = 0; } #ifdef S_SPLINT_S /* don't complain about returning stack references */ iov[0].iov_base = NULL; #endif if((size_t)done == ntohs(len) + sizeof(uint16_t)) { /* done in one call */ comm_point_drop_reply(repinfo); } else { /* sending remaining bytes */ ldns_buffer_clear(repinfo->c->buffer); repinfo->c->tcp_byte_count = (size_t)done; for(i=1; ic->buffer, iov[i].iov_base, iov[i].iov_len); ldns_buffer_flip(repinfo->c->buffer); if((size_t)done >= sizeof(uint16_t)) ldns_buffer_set_position(repinfo->c->buffer, (size_t)done - sizeof(uint16_t)); comm_point_start_listening(repinfo->c, -1, TCP_QUERY_TIMEOUT); } } } void comm_point_drop_reply(struct comm_reply* repinfo) { if(!repinfo) return; log_assert(repinfo && repinfo->c); log_assert(repinfo->c->type != comm_tcp_accept); if(repinfo->c->type == comm_udp) return; reclaim_tcp_handler(repinfo->c); } void comm_point_stop_listening(struct comm_point* c) { verbose(VERB_ALGO, "comm point stop listening %d", c->fd); if(event_del(&c->ev->ev) != 0) { log_err("event_del error to stoplisten"); } } void comm_point_start_listening(struct comm_point* c, int newfd, int sec) { verbose(VERB_ALGO, "comm point start listening %d", c->fd); if(c->type == comm_tcp_accept && !c->tcp_free) { /* no use to start listening no free slots. */ return; } if(sec != -1 && sec != 0) { if(!c->timeout) { c->timeout = (struct timeval*)malloc(sizeof( struct timeval)); if(!c->timeout) { log_err("cpsl: malloc failed. No net read."); return; } } #ifndef S_SPLINT_S /* splint fails on struct timeval. */ c->timeout->tv_sec = sec; c->timeout->tv_usec = 0; #endif /* S_SPLINT_S */ } if(c->type == comm_tcp) { c->ev->ev.ev_events &= ~(EV_READ|EV_WRITE); if(c->tcp_is_reading) c->ev->ev.ev_events |= EV_READ; else c->ev->ev.ev_events |= EV_WRITE; } if(newfd != -1) { if(c->fd != -1) close(c->fd); c->fd = newfd; c->ev->ev.ev_fd = c->fd; } if(event_add(&c->ev->ev, sec==0?NULL:c->timeout) != 0) { log_err("event_add failed. in cpsl."); } } size_t comm_point_get_mem(struct comm_point* c) { size_t s; if(!c) return 0; s = sizeof(*c) + sizeof(*c->ev); if(c->timeout) s += sizeof(*c->timeout); if(c->type == comm_tcp || c->type == comm_local) s += sizeof(*c->buffer) + ldns_buffer_capacity(c->buffer); if(c->type == comm_tcp_accept) { int i; for(i=0; imax_tcp_count; i++) s += comm_point_get_mem(c->tcp_handlers[i]); } return s; } struct comm_timer* comm_timer_create(struct comm_base* base, void (*cb)(void*), void* cb_arg) { struct comm_timer *tm = (struct comm_timer*)calloc(1, sizeof(struct comm_timer)); if(!tm) return NULL; tm->ev_timer = (struct internal_timer*)calloc(1, sizeof(struct internal_timer)); if(!tm->ev_timer) { log_err("malloc failed"); free(tm); return NULL; } tm->callback = cb; tm->cb_arg = cb_arg; event_set(&tm->ev_timer->ev, -1, EV_PERSIST|EV_TIMEOUT, comm_timer_callback, tm); if(event_base_set(base->eb->base, &tm->ev_timer->ev) != 0) { log_err("timer_create: event_base_set failed."); free(tm->ev_timer); free(tm); return NULL; } return tm; } void comm_timer_disable(struct comm_timer* timer) { if(!timer) return; evtimer_del(&timer->ev_timer->ev); timer->ev_timer->enabled = 0; } void comm_timer_set(struct comm_timer* timer, struct timeval* tv) { log_assert(tv); if(timer->ev_timer->enabled) comm_timer_disable(timer); if(evtimer_add(&timer->ev_timer->ev, tv) != 0) log_err("comm_timer_set: evtimer_add failed."); timer->ev_timer->enabled = 1; } void comm_timer_delete(struct comm_timer* timer) { if(!timer) return; comm_timer_disable(timer); free(timer->ev_timer); free(timer); } void comm_timer_callback(int ATTR_UNUSED(fd), short event, void* arg) { struct comm_timer* tm = (struct comm_timer*)arg; if(!(event&EV_TIMEOUT)) return; tm->ev_timer->enabled = 0; log_assert(fptr_whitelist_comm_timer(tm->callback)); (*tm->callback)(tm->cb_arg); } int comm_timer_is_set(struct comm_timer* timer) { return (int)timer->ev_timer->enabled; } size_t comm_timer_get_mem(struct comm_timer* timer) { return sizeof(*timer) + sizeof(struct internal_timer); } struct comm_signal* comm_signal_create(struct comm_base* base, void (*callback)(int, void*), void* cb_arg) { struct comm_signal* com = (struct comm_signal*)malloc( sizeof(struct comm_signal)); if(!com) { log_err("malloc failed"); return NULL; } com->base = base; com->callback = callback; com->cb_arg = cb_arg; com->ev_signal = NULL; return com; } void comm_signal_callback(int sig, short event, void* arg) { struct comm_signal* comsig = (struct comm_signal*)arg; if(!(event & EV_SIGNAL)) return; log_assert(fptr_whitelist_comm_signal(comsig->callback)); (*comsig->callback)(sig, comsig->cb_arg); } int comm_signal_bind(struct comm_signal* comsig, int sig) { struct internal_signal* entry = (struct internal_signal*)calloc(1, sizeof(struct internal_signal)); if(!entry) { log_err("malloc failed"); return 0; } log_assert(comsig); /* add signal event */ signal_set(&entry->ev, sig, comm_signal_callback, comsig); if(event_base_set(comsig->base->eb->base, &entry->ev) != 0) { log_err("Could not set signal base"); free(entry); return 0; } if(signal_add(&entry->ev, NULL) != 0) { log_err("Could not add signal handler"); free(entry); return 0; } /* link into list */ entry->next = comsig->ev_signal; comsig->ev_signal = entry; return 1; } void comm_signal_delete(struct comm_signal* comsig) { struct internal_signal* p, *np; if(!comsig) return; p=comsig->ev_signal; while(p) { np = p->next; signal_del(&p->ev); free(p); p = np; } free(comsig); }