unbound/services/outside_network.c

1316 lines
37 KiB
C
Raw Normal View History

/*
* services/outside_network.c - implement sending of queries and wait answer.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file has functions to send queries to authoritative servers and
* wait for the pending answer events.
*/
#include "services/outside_network.h"
#include "services/listen_dnsport.h"
#include "services/cache/infra.h"
#include "util/data/msgparse.h"
#include "util/data/msgreply.h"
#include "util/data/msgencode.h"
#include "util/netevent.h"
#include "util/log.h"
#include "util/net_help.h"
#include "util/random.h"
#include "util/fptr_wlist.h"
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <netdb.h>
#include <fcntl.h>
/** number of times to retry making a random ID that is unique. */
#define MAX_ID_RETRY 1000
/** number of retries on outgoing UDP queries */
#define OUTBOUND_UDP_RETRY 1
/** initiate TCP transaction for serviced query */
static void serviced_tcp_initiate(struct outside_network* outnet,
struct serviced_query* sq, ldns_buffer* buff);
int
pending_cmp(const void* key1, const void* key2)
{
struct pending *p1 = (struct pending*)key1;
struct pending *p2 = (struct pending*)key2;
if(p1->id < p2->id)
return -1;
if(p1->id > p2->id)
return 1;
log_assert(p1->id == p2->id);
return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen);
}
int
serviced_cmp(const void* key1, const void* key2)
{
struct serviced_query* q1 = (struct serviced_query*)key1;
struct serviced_query* q2 = (struct serviced_query*)key2;
int r;
if(q1->qbuflen < q2->qbuflen)
return -1;
if(q1->qbuflen > q2->qbuflen)
return 1;
log_assert(q1->qbuflen == q2->qbuflen);
/* will not detect alternate casing of qname */
if((r = memcmp(q1->qbuf, q2->qbuf, q1->qbuflen)) != 0)
return r;
if(q1->dnssec != q2->dnssec) {
if(q1->dnssec < q2->dnssec)
return -1;
return 1;
}
return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen);
}
/** delete waiting_tcp entry. Does not unlink from waiting list.
* @param w: to delete.
*/
static void
waiting_tcp_delete(struct waiting_tcp* w)
{
if(!w) return;
if(w->timer)
comm_timer_delete(w->timer);
free(w);
}
/** use next free buffer to service a tcp query */
static int
outnet_tcp_take_into_use(struct waiting_tcp* w, uint8_t* pkt, size_t pkt_len)
{
struct pending_tcp* pend = w->outnet->tcp_free;
int s;
log_assert(pend);
log_assert(pkt);
log_assert(w->addrlen > 0);
/* open socket */
#ifdef INET6
if(addr_is_ip6(&w->addr, w->addrlen))
s = socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP);
else
#endif
s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if(s == -1) {
log_err("outgoing tcp: socket: %s", strerror(errno));
log_addr(0, "failed address", &w->addr, w->addrlen);
return 0;
}
fd_set_nonblock(s);
if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) {
if(errno != EINPROGRESS) {
log_err("outgoing tcp: connect: %s", strerror(errno));
log_addr(0, "failed address", &w->addr, w->addrlen);
close(s);
return 0;
}
}
w->pkt = NULL;
w->next_waiting = (void*)pend;
pend->id = LDNS_ID_WIRE(pkt);
w->outnet->tcp_free = pend->next_free;
pend->next_free = NULL;
pend->query = w;
pend->c->repinfo.addrlen = w->addrlen;
memcpy(&pend->c->repinfo.addr, &w->addr, w->addrlen);
ldns_buffer_clear(pend->c->buffer);
ldns_buffer_write(pend->c->buffer, pkt, pkt_len);
ldns_buffer_flip(pend->c->buffer);
pend->c->tcp_is_reading = 0;
pend->c->tcp_byte_count = 0;
comm_point_start_listening(pend->c, s, -1);
return 1;
}
/** see if buffers can be used to service TCP queries */
static void
use_free_buffer(struct outside_network* outnet)
{
struct waiting_tcp* w;
while(outnet->tcp_free && outnet->tcp_wait_first) {
w = outnet->tcp_wait_first;
outnet->tcp_wait_first = w->next_waiting;
if(outnet->tcp_wait_last == w)
outnet->tcp_wait_last = NULL;
if(!outnet_tcp_take_into_use(w, w->pkt, w->pkt_len)) {
comm_point_callback_t* cb = w->cb;
void* cb_arg = w->cb_arg;
waiting_tcp_delete(w);
log_assert(fptr_whitelist_pending_tcp(cb));
(void)(*cb)(NULL, cb_arg, NETEVENT_CLOSED, NULL);
}
}
}
/** decomission a tcp buffer, closes commpoint and frees waiting_tcp entry */
static void
decomission_pending_tcp(struct outside_network* outnet,
struct pending_tcp* pend)
{
comm_point_close(pend->c);
pend->next_free = outnet->tcp_free;
outnet->tcp_free = pend;
waiting_tcp_delete(pend->query);
pend->query = NULL;
use_free_buffer(outnet);
}
int
outnet_tcp_cb(struct comm_point* c, void* arg, int error,
struct comm_reply *reply_info)
{
struct pending_tcp* pend = (struct pending_tcp*)arg;
struct outside_network* outnet = pend->query->outnet;
verbose(VERB_ALGO, "outnettcp cb");
if(error != NETEVENT_NOERROR) {
verbose(VERB_DETAIL, "outnettcp got tcp error %d", error);
/* pass error below and exit */
} else {
/* check ID */
if(ldns_buffer_limit(c->buffer) < sizeof(uint16_t) ||
LDNS_ID_WIRE(ldns_buffer_begin(c->buffer))!=pend->id) {
log_addr(VERB_DETAIL,
"outnettcp: bad ID in reply, from:",
&pend->query->addr, pend->query->addrlen);
error = NETEVENT_CLOSED;
}
}
log_assert(fptr_whitelist_pending_tcp(pend->query->cb));
(void)(*pend->query->cb)(c, pend->query->cb_arg, error, reply_info);
decomission_pending_tcp(outnet, pend);
return 0;
}
int
outnet_udp_cb(struct comm_point* c, void* arg, int error,
struct comm_reply *reply_info)
{
struct outside_network* outnet = (struct outside_network*)arg;
struct pending key;
struct pending* p;
verbose(VERB_ALGO, "answer cb");
if(error != NETEVENT_NOERROR) {
verbose(VERB_DETAIL, "outnetudp got udp error %d", error);
return 0;
}
if(ldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
verbose(VERB_DETAIL, "outnetudp udp too short");
return 0;
}
log_assert(reply_info);
/* setup lookup key */
key.id = LDNS_ID_WIRE(ldns_buffer_begin(c->buffer));
memcpy(&key.addr, &reply_info->addr, reply_info->addrlen);
key.addrlen = reply_info->addrlen;
verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id);
log_addr(VERB_ALGO, "Incoming reply addr =",
&reply_info->addr, reply_info->addrlen);
/* find it, see if this thing is a valid query response */
verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count);
p = (struct pending*)rbtree_search(outnet->pending, &key);
if(!p) {
verbose(VERB_DETAIL, "received unwanted or unsolicited udp reply dropped.");
log_buf(VERB_ALGO, "dropped message", c->buffer);
return 0;
}
verbose(VERB_ALGO, "received udp reply.");
log_buf(VERB_ALGO, "udp message", c->buffer);
if(p->c != c) {
verbose(VERB_DETAIL, "received reply id,addr on wrong port. "
"dropped.");
return 0;
}
comm_timer_disable(p->timer);
verbose(VERB_ALGO, "outnet handle udp reply");
/* delete from tree first in case callback creates a retry */
(void)rbtree_delete(outnet->pending, p->node.key);
log_assert(fptr_whitelist_pending_udp(p->cb));
(void)(*p->cb)(p->c, p->cb_arg, NETEVENT_NOERROR, reply_info);
pending_delete(NULL, p);
return 0;
}
/** open another udp port to listen to, every thread has its own range
* of open ports.
* @param ifname: on which interface to open the port.
* @param hints: hints on family and passiveness preset.
* @param porthint: if not -1, it gives the port to base range on.
* @return: file descriptor
*/
static int
open_udp_port_range(const char* ifname, struct addrinfo* hints, int porthint)
{
struct addrinfo *res = NULL;
int r, s;
char portstr[32];
if(porthint != -1)
snprintf(portstr, sizeof(portstr), "%d", porthint);
else if(!ifname) {
if(hints->ai_family == AF_INET)
ifname = "0.0.0.0";
else ifname="::";
}
if((r=getaddrinfo(ifname, ((porthint==-1)?NULL:portstr), hints,
&res)) != 0 || !res) {
log_err("node %s %s getaddrinfo: %s %s",
ifname?ifname:"default", (porthint!=-1)?portstr:"eph",
gai_strerror(r),
r==EAI_SYSTEM?(char*)strerror(errno):"");
return -1;
}
s = create_udp_sock(res, 1);
freeaddrinfo(res);
return s;
}
/**
* Create range of UDP ports on the given interface.
* Returns number of ports bound.
* @param coms: communication point array start position. Filled with entries.
* @param ifname: name of interface to make port on.
* @param num_ports: number of ports opened.
* @param do_ip4: if true make ip4 ports.
* @param do_ip6: if true make ip6 ports.
* @param porthint: -1 for system chosen port, or a base of port range.
* @param outnet: network structure with comm base, shared udp buffer.
* @return: the number of ports successfully opened, entries filled in coms.
*/
static size_t
make_udp_range(struct comm_point** coms, const char* ifname,
size_t num_ports, int do_ip4, int do_ip6, int porthint,
struct outside_network* outnet)
{
size_t i;
size_t done = 0;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_PASSIVE;
if(ifname)
hints.ai_flags |= AI_NUMERICHOST;
hints.ai_family = AF_UNSPEC;
if(do_ip4 && do_ip6)
hints.ai_family = AF_UNSPEC;
else if(do_ip4)
hints.ai_family = AF_INET;
else if(do_ip6)
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_DGRAM;
for(i=0; i<num_ports; i++) {
int fd = open_udp_port_range(ifname, &hints, porthint);
if(porthint != -1)
porthint++;
if(fd == -1)
continue;
coms[done] = comm_point_create_udp(outnet->base, fd,
outnet->udp_buff, outnet_udp_cb, outnet);
if(coms[done])
done++;
}
return done;
}
/** calculate number of ip4 and ip6 interfaces, times multiplier */
static void
calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6,
size_t multiplier, size_t* num_ip4, size_t* num_ip6)
{
int i;
*num_ip4 = 0;
*num_ip6 = 0;
if(num_ifs <= 0) {
if(do_ip4)
*num_ip4 = multiplier;
if(do_ip6)
*num_ip6 = multiplier;
return;
}
for(i=0; i<num_ifs; i++)
{
if(str_is_ip6(ifs[i])) {
if(do_ip6)
*num_ip6 += multiplier;
} else {
if(do_ip4)
*num_ip4 += multiplier;
}
}
}
void
pending_udp_timer_cb(void *arg)
{
struct pending* p = (struct pending*)arg;
/* it timed out */
verbose(VERB_ALGO, "timeout udp");
log_assert(fptr_whitelist_pending_udp(p->cb));
(void)(*p->cb)(p->c, p->cb_arg, NETEVENT_TIMEOUT, NULL);
pending_delete(p->outnet, p);
}
/** create pending_tcp buffers */
static int
create_pending_tcp(struct outside_network* outnet, size_t bufsize)
{
size_t i;
if(outnet->num_tcp == 0)
return 1; /* no tcp needed, nothing to do */
if(!(outnet->tcp_conns = (struct pending_tcp **)calloc(
outnet->num_tcp, sizeof(struct pending_tcp*))))
return 0;
for(i=0; i<outnet->num_tcp; i++) {
if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1,
sizeof(struct pending_tcp))))
return 0;
outnet->tcp_conns[i]->next_free = outnet->tcp_free;
outnet->tcp_free = outnet->tcp_conns[i];
outnet->tcp_conns[i]->c = comm_point_create_tcp_out(
outnet->base, bufsize, outnet_tcp_cb,
outnet->tcp_conns[i]);
if(!outnet->tcp_conns[i]->c)
return 0;
}
return 1;
}
struct outside_network*
outside_network_create(struct comm_base *base, size_t bufsize,
size_t num_ports, char** ifs, int num_ifs, int do_ip4,
int do_ip6, int port_base, size_t num_tcp, struct infra_cache* infra,
struct ub_randstate* rnd)
{
struct outside_network* outnet = (struct outside_network*)
calloc(1, sizeof(struct outside_network));
int k;
if(!outnet) {
log_err("malloc failed");
return NULL;
}
outnet->base = base;
outnet->num_tcp = num_tcp;
outnet->infra = infra;
outnet->rnd = rnd;
outnet->svcd_overhead = 0;
#ifndef INET6
do_ip6 = 0;
#endif
calc_num46(ifs, num_ifs, do_ip4, do_ip6, num_ports,
&outnet->num_udp4, &outnet->num_udp6);
/* adds +1 to portnums so we do not allocate zero bytes. */
if( !(outnet->udp_buff = ldns_buffer_new(bufsize)) ||
!(outnet->udp4_ports = (struct comm_point **)calloc(
outnet->num_udp4+1, sizeof(struct comm_point*))) ||
!(outnet->udp6_ports = (struct comm_point **)calloc(
outnet->num_udp6+1, sizeof(struct comm_point*))) ||
!(outnet->pending = rbtree_create(pending_cmp)) ||
!(outnet->serviced = rbtree_create(serviced_cmp)) ||
!create_pending_tcp(outnet, bufsize)) {
log_err("malloc failed");
outside_network_delete(outnet);
return NULL;
}
/* Try to get ip6 and ip4 ports. Ip6 first, in case second fails. */
if(num_ifs == 0) {
if(do_ip6) {
outnet->num_udp6 = make_udp_range(outnet->udp6_ports,
NULL, num_ports, 0, 1, port_base, outnet);
}
if(do_ip4) {
outnet->num_udp4 = make_udp_range(outnet->udp4_ports,
NULL, num_ports, 1, 0, port_base, outnet);
}
if( (do_ip4 && outnet->num_udp4 != num_ports) ||
(do_ip6 && outnet->num_udp6 != num_ports)) {
log_err("Could not open all networkside ports");
outside_network_delete(outnet);
return NULL;
}
}
else {
size_t done_4 = 0, done_6 = 0;
for(k=0; k<num_ifs; k++) {
if(str_is_ip6(ifs[k]) && do_ip6) {
done_6 += make_udp_range(
outnet->udp6_ports+done_6, ifs[k],
num_ports, 0, 1, port_base, outnet);
}
if(!str_is_ip6(ifs[k]) && do_ip4) {
done_4 += make_udp_range(
outnet->udp4_ports+done_4, ifs[k],
num_ports, 1, 0, port_base, outnet);
}
}
if(done_6 != outnet->num_udp6 || done_4 != outnet->num_udp4) {
log_err("Could not open all ports on all interfaces");
outside_network_delete(outnet);
return NULL;
}
outnet->num_udp6 = done_6;
outnet->num_udp4 = done_4;
}
if(outnet->num_udp4 + outnet->num_udp6 == 0) {
log_err("Could not open any ports on outgoing interfaces");
outside_network_delete(outnet);
return NULL;
}
return outnet;
}
/** helper pending delete */
static void
pending_node_del(rbnode_t* node, void* arg)
{
struct pending* pend = (struct pending*)node;
struct outside_network* outnet = (struct outside_network*)arg;
pending_delete(outnet, pend);
}
/** helper serviced delete */
static void
serviced_node_del(rbnode_t* node, void* ATTR_UNUSED(arg))
{
struct serviced_query* sq = (struct serviced_query*)node;
struct service_callback* p = sq->cblist, *np;
free(sq->qbuf);
while(p) {
np = p->next;
free(p);
p = np;
}
free(sq);
}
void
outside_network_delete(struct outside_network* outnet)
{
if(!outnet)
return;
/* check every element, since we can be called on malloc error */
if(outnet->pending) {
/* free pending elements, but do no unlink from tree. */
traverse_postorder(outnet->pending, pending_node_del, NULL);
free(outnet->pending);
}
if(outnet->serviced) {
traverse_postorder(outnet->serviced, serviced_node_del, NULL);
free(outnet->serviced);
}
if(outnet->udp_buff)
ldns_buffer_free(outnet->udp_buff);
if(outnet->udp4_ports) {
size_t i;
for(i=0; i<outnet->num_udp4; i++)
comm_point_delete(outnet->udp4_ports[i]);
free(outnet->udp4_ports);
}
if(outnet->udp6_ports) {
size_t i;
for(i=0; i<outnet->num_udp6; i++)
comm_point_delete(outnet->udp6_ports[i]);
free(outnet->udp6_ports);
}
if(outnet->tcp_conns) {
size_t i;
for(i=0; i<outnet->num_tcp; i++)
if(outnet->tcp_conns[i]) {
comm_point_delete(outnet->tcp_conns[i]->c);
waiting_tcp_delete(outnet->tcp_conns[i]->query);
free(outnet->tcp_conns[i]);
}
free(outnet->tcp_conns);
}
if(outnet->tcp_wait_first) {
struct waiting_tcp* p = outnet->tcp_wait_first, *np;
while(p) {
np = p->next_waiting;
waiting_tcp_delete(p);
p = np;
}
}
free(outnet);
}
void
pending_delete(struct outside_network* outnet, struct pending* p)
{
if(!p)
return;
if(outnet) {
(void)rbtree_delete(outnet->pending, p->node.key);
}
if(p->timer)
comm_timer_delete(p->timer);
free(p);
}
/** create a new pending item with given characteristics, false on failure */
static struct pending*
new_pending(struct outside_network* outnet, ldns_buffer* packet,
struct sockaddr_storage* addr, socklen_t addrlen,
comm_point_callback_t* callback, void* callback_arg,
struct ub_randstate* rnd)
{
/* alloc */
int id_tries = 0;
struct pending* pend = (struct pending*)calloc(1,
sizeof(struct pending));
if(!pend) {
log_err("malloc failure");
return NULL;
}
pend->timer = comm_timer_create(outnet->base, pending_udp_timer_cb,
pend);
if(!pend->timer) {
free(pend);
return NULL;
}
/* set */
pend->id = ((unsigned)ub_random(rnd)>>8) & 0xffff;
LDNS_ID_SET(ldns_buffer_begin(packet), pend->id);
memcpy(&pend->addr, addr, addrlen);
pend->addrlen = addrlen;
pend->cb = callback;
pend->cb_arg = callback_arg;
pend->outnet = outnet;
/* insert in tree */
pend->node.key = pend;
while(!rbtree_insert(outnet->pending, &pend->node)) {
/* change ID to avoid collision */
pend->id = ((unsigned)ub_random(rnd)>>8) & 0xffff;
LDNS_ID_SET(ldns_buffer_begin(packet), pend->id);
id_tries++;
if(id_tries == MAX_ID_RETRY) {
log_err("failed to generate unique ID, drop msg");
pending_delete(NULL, pend);
return NULL;
}
}
verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id);
return pend;
}
/**
* Select outgoing comm point for a query. Fills in c.
* @param outnet: network structure that has arrays of ports to choose from.
* @param pend: the message to send. c is filled in, randomly chosen.
* @param rnd: random state for generating ID and port.
*/
static void
select_port(struct outside_network* outnet, struct pending* pend,
struct ub_randstate* rnd)
{
double precho;
int chosen, nummax;
log_assert(outnet && pend);
/* first select ip4 or ip6. */
if(addr_is_ip6(&pend->addr, pend->addrlen))
nummax = (int)outnet->num_udp6;
else nummax = (int)outnet->num_udp4;
if(nummax == 0) {
/* could try ip4to6 mapping if no ip4 ports available */
log_err("Need to send query but have no ports of that family");
return;
}
/* choose a random outgoing port and interface */
precho = (double)ub_random(rnd) * (double)nummax /
((double)RAND_MAX + 1.0);
chosen = (int)precho;
/* don't trust in perfect double rounding */
if(chosen < 0) chosen = 0;
if(chosen >= nummax) chosen = nummax-1;
if(addr_is_ip6(&pend->addr, pend->addrlen))
pend->c = outnet->udp6_ports[chosen];
else pend->c = outnet->udp4_ports[chosen];
log_assert(pend->c);
verbose(VERB_ALGO, "query %x outbound on port %d of %d", pend->id, chosen, nummax);
}
struct pending*
pending_udp_query(struct outside_network* outnet, ldns_buffer* packet,
struct sockaddr_storage* addr, socklen_t addrlen, int timeout,
comm_point_callback_t* cb, void* cb_arg, struct ub_randstate* rnd)
{
struct pending* pend;
struct timeval tv;
/* create pending struct and change ID to be unique */
if(!(pend=new_pending(outnet, packet, addr, addrlen, cb, cb_arg,
rnd))) {
return NULL;
}
select_port(outnet, pend, rnd);
if(!pend->c) {
pending_delete(outnet, pend);
return NULL;
}
/* send it over the commlink */
if(!comm_point_send_udp_msg(pend->c, packet, (struct sockaddr*)addr,
addrlen)) {
pending_delete(outnet, pend);
return NULL;
}
/* system calls to set timeout after sending UDP to make roundtrip
smaller. */
tv.tv_sec = timeout/1000;
tv.tv_usec = (timeout%1000)*1000;
comm_timer_set(pend->timer, &tv);
return pend;
}
void
outnet_tcptimer(void* arg)
{
struct waiting_tcp* w = (struct waiting_tcp*)arg;
struct outside_network* outnet = w->outnet;
comm_point_callback_t* cb;
void* cb_arg;
if(w->pkt) {
/* it is on the waiting list */
struct waiting_tcp* p=outnet->tcp_wait_first, *prev=NULL;
while(p) {
if(p == w) {
if(prev) prev->next_waiting = w->next_waiting;
else outnet->tcp_wait_first=w->next_waiting;
outnet->tcp_wait_last = prev;
break;
}
prev = p;
p=p->next_waiting;
}
} else {
/* it was in use */
struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting;
comm_point_close(pend->c);
pend->query = NULL;
pend->next_free = outnet->tcp_free;
outnet->tcp_free = pend;
}
cb = w->cb;
cb_arg = w->cb_arg;
waiting_tcp_delete(w);
log_assert(fptr_whitelist_pending_tcp(cb));
(void)(*cb)(NULL, cb_arg, NETEVENT_TIMEOUT, NULL);
use_free_buffer(outnet);
}
struct waiting_tcp*
pending_tcp_query(struct outside_network* outnet, ldns_buffer* packet,
struct sockaddr_storage* addr, socklen_t addrlen, int timeout,
comm_point_callback_t* callback, void* callback_arg,
struct ub_randstate* rnd)
{
struct pending_tcp* pend = outnet->tcp_free;
struct waiting_tcp* w;
struct timeval tv;
uint16_t id;
/* if no buffer is free allocate space to store query */
w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp)
+ (pend?0:ldns_buffer_limit(packet)));
if(!w) {
return NULL;
}
if(!(w->timer = comm_timer_create(outnet->base, outnet_tcptimer, w))) {
free(w);
return NULL;
}
w->pkt = NULL;
w->pkt_len = 0;
id = ((unsigned)ub_random(rnd)>>8) & 0xffff;
LDNS_ID_SET(ldns_buffer_begin(packet), id);
memcpy(&w->addr, addr, addrlen);
w->addrlen = addrlen;
w->outnet = outnet;
w->cb = callback;
w->cb_arg = callback_arg;
tv.tv_sec = timeout;
tv.tv_usec = 0;
comm_timer_set(w->timer, &tv);
if(pend) {
/* we have a buffer available right now */
if(!outnet_tcp_take_into_use(w, ldns_buffer_begin(packet),
ldns_buffer_limit(packet))) {
waiting_tcp_delete(w);
return NULL;
}
} else {
/* queue up */
w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp);
w->pkt_len = ldns_buffer_limit(packet);
memmove(w->pkt, ldns_buffer_begin(packet), w->pkt_len);
w->next_waiting = NULL;
if(outnet->tcp_wait_last)
outnet->tcp_wait_last->next_waiting = w;
else outnet->tcp_wait_first = w;
outnet->tcp_wait_last = w;
}
return w;
}
/** create query for serviced queries */
static void
serviced_gen_query(ldns_buffer* buff, uint8_t* qname, size_t qnamelen,
uint16_t qtype, uint16_t qclass, uint16_t flags)
{
ldns_buffer_clear(buff);
/* skip id */
ldns_buffer_write_u16(buff, flags);
ldns_buffer_write_u16(buff, 1); /* qdcount */
ldns_buffer_write_u16(buff, 0); /* ancount */
ldns_buffer_write_u16(buff, 0); /* nscount */
ldns_buffer_write_u16(buff, 0); /* arcount */
ldns_buffer_write(buff, qname, qnamelen);
ldns_buffer_write_u16(buff, qtype);
ldns_buffer_write_u16(buff, qclass);
ldns_buffer_flip(buff);
}
/** lookup serviced query in serviced query rbtree */
static struct serviced_query*
lookup_serviced(struct outside_network* outnet, ldns_buffer* buff, int dnssec,
struct sockaddr_storage* addr, socklen_t addrlen)
{
struct serviced_query key;
key.node.key = &key;
key.qbuf = ldns_buffer_begin(buff);
key.qbuflen = ldns_buffer_limit(buff);
key.dnssec = dnssec;
memcpy(&key.addr, addr, addrlen);
key.addrlen = addrlen;
key.outnet = outnet;
return (struct serviced_query*)rbtree_search(outnet->serviced, &key);
}
/** Create new serviced entry */
static struct serviced_query*
serviced_create(struct outside_network* outnet, ldns_buffer* buff, int dnssec,
struct sockaddr_storage* addr, socklen_t addrlen)
{
struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq));
rbnode_t* ins;
if(!sq)
return NULL;
sq->node.key = sq;
sq->qbuf = memdup(ldns_buffer_begin(buff), ldns_buffer_limit(buff));
if(!sq->qbuf) {
free(sq);
return NULL;
}
sq->qbuflen = ldns_buffer_limit(buff);
sq->dnssec = dnssec;
memcpy(&sq->addr, addr, addrlen);
sq->addrlen = addrlen;
sq->outnet = outnet;
sq->cblist = NULL;
sq->pending = NULL;
sq->status = serviced_initial;
sq->retry = 0;
sq->to_be_deleted = 0;
ins = rbtree_insert(outnet->serviced, &sq->node);
log_assert(ins != NULL); /* must not be already present */
return sq;
}
/** remove waiting tcp from the outnet waiting list */
static void
waiting_list_remove(struct outside_network* outnet, struct waiting_tcp* w)
{
struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL;
while(p) {
if(p == w) {
/* remove w */
if(prev)
prev->next_waiting = w->next_waiting;
else outnet->tcp_wait_first = w->next_waiting;
if(outnet->tcp_wait_last == w)
outnet->tcp_wait_last = prev;
return;
}
prev = p;
p = p->next_waiting;
}
}
/** cleanup serviced query entry */
static void
serviced_delete(struct serviced_query* sq)
{
if(sq->pending) {
/* clear up the pending query */
if(sq->status == serviced_query_UDP_EDNS ||
sq->status == serviced_query_UDP) {
struct pending* p = (struct pending*)sq->pending;
pending_delete(sq->outnet, p);
} else {
struct waiting_tcp* p = (struct waiting_tcp*)
sq->pending;
if(p->pkt == NULL) {
decomission_pending_tcp(sq->outnet,
(struct pending_tcp*)p->next_waiting);
} else {
waiting_list_remove(sq->outnet, p);
waiting_tcp_delete(p);
}
}
}
/* does not delete from tree, caller has to do that */
serviced_node_del(&sq->node, NULL);
}
/** put serviced query into a buffer */
static void
serviced_encode(struct serviced_query* sq, ldns_buffer* buff, int with_edns)
{
/* generate query */
ldns_buffer_clear(buff);
ldns_buffer_write_u16(buff, 0); /* id placeholder */
ldns_buffer_write(buff, sq->qbuf, sq->qbuflen);
ldns_buffer_flip(buff);
if(with_edns) {
/* add edns section */
struct edns_data edns;
edns.edns_present = 1;
edns.ext_rcode = 0;
edns.edns_version = EDNS_ADVERTISED_VERSION;
edns.udp_size = EDNS_ADVERTISED_SIZE;
edns.bits = 0;
if(sq->dnssec & EDNS_DO)
edns.bits = EDNS_DO;
if(sq->dnssec & BIT_CD)
LDNS_CD_SET(ldns_buffer_begin(buff));
attach_edns_record(buff, &edns);
}
}
/**
* Perform serviced query UDP sending operation.
* Sends UDP with EDNS, unless infra host marked non EDNS.
* @param sq: query to send.
* @param buff: buffer scratch space.
* @return 0 on error.
*/
static int
serviced_udp_send(struct serviced_query* sq, ldns_buffer* buff)
{
int rtt, vs;
time_t now = time(0);
if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, now, &vs,
&rtt))
return 0;
if(sq->status == serviced_initial) {
if(vs != -1)
sq->status = serviced_query_UDP_EDNS;
else sq->status = serviced_query_UDP;
}
serviced_encode(sq, buff, sq->status == serviced_query_UDP_EDNS);
if(gettimeofday(&sq->last_sent_time, NULL) < 0) {
log_err("gettimeofday: %s", strerror(errno));
return 0;
}
verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt);
sq->pending = pending_udp_query(sq->outnet, buff, &sq->addr,
sq->addrlen, rtt, serviced_udp_callback, sq, sq->outnet->rnd);
if(!sq->pending)
return 0;
return 1;
}
/** call the callbacks for a serviced query */
static void
serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c,
struct comm_reply* rep)
{
struct service_callback* p = sq->cblist, *n;
int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/
uint8_t *backup_p = NULL;
size_t backlen = 0;
rbnode_t* rem;
/* remove from tree, and schedule for deletion, so that callbacks
* can safely deregister themselves and even create new serviced
* queries that are identical to this one. */
rem = rbtree_delete(sq->outnet->serviced, sq);
log_assert(rem); /* should have been present */
sq->to_be_deleted = 1;
verbose(VERB_ALGO, "svcd callbacks start");
if(dobackup && c) {
/* make a backup of the query, since the querystate processing
* may send outgoing queries that overwrite the buffer.
* use secondary buffer to store the query.
* This is a data copy, but faster than packet to server */
backlen = ldns_buffer_limit(c->buffer);
backup_p = memdup(ldns_buffer_begin(c->buffer), backlen);
if(!backup_p) {
log_err("malloc failure in serviced query callbacks");
error = NETEVENT_CLOSED;
c = NULL;
}
sq->outnet->svcd_overhead = backlen;
}
while(p) {
n = p->next;
if(dobackup && c) {
ldns_buffer_clear(c->buffer);
ldns_buffer_write(c->buffer, backup_p, backlen);
ldns_buffer_flip(c->buffer);
}
log_assert(fptr_whitelist_serviced_query(p->cb));
(void)(*p->cb)(c, p->cb_arg, error, rep);
p = n;
}
if(backup_p) {
free(backup_p);
sq->outnet->svcd_overhead = 0;
}
verbose(VERB_ALGO, "svcd callbacks end");
log_assert(sq->cblist == NULL);
serviced_delete(sq);
}
int
serviced_tcp_callback(struct comm_point* c, void* arg, int error,
struct comm_reply* rep)
{
struct serviced_query* sq = (struct serviced_query*)arg;
struct comm_reply r2;
sq->pending = NULL; /* removed after this callback */
if(error != NETEVENT_NOERROR)
log_addr(VERB_DETAIL, "tcp error for address",
&sq->addr, sq->addrlen);
if(error==NETEVENT_NOERROR)
infra_update_tcp_works(sq->outnet->infra, &sq->addr,
sq->addrlen);
if(error==NETEVENT_NOERROR && sq->status == serviced_query_TCP_EDNS &&
(LDNS_RCODE_WIRE(ldns_buffer_begin(c->buffer)) ==
LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(ldns_buffer_begin(
c->buffer)) == LDNS_RCODE_NOTIMPL) ) {
if(!infra_edns_update(sq->outnet->infra, &sq->addr,
sq->addrlen, -1, time(0)))
log_err("Out of memory caching no edns for host");
sq->status = serviced_query_TCP;
serviced_tcp_initiate(sq->outnet, sq, c->buffer);
return 0;
}
/* insert address into reply info */
if(!rep) {
/* create one if there isn't (on errors) */
rep = &r2;
r2.c = c;
}
memcpy(&rep->addr, &sq->addr, sq->addrlen);
rep->addrlen = sq->addrlen;
serviced_callbacks(sq, error, c, rep);
return 0;
}
static void
serviced_tcp_initiate(struct outside_network* outnet,
struct serviced_query* sq, ldns_buffer* buff)
{
serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS);
sq->pending = pending_tcp_query(outnet, buff, &sq->addr,
sq->addrlen, TCP_AUTH_QUERY_TIMEOUT, serviced_tcp_callback,
sq, outnet->rnd);
if(!sq->pending) {
/* delete from tree so that a retry by above layer does not
* clash with this entry */
log_err("serviced_tcp_initiate: failed to send tcp query");
serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL);
}
}
int
serviced_udp_callback(struct comm_point* c, void* arg, int error,
struct comm_reply* rep)
{
struct serviced_query* sq = (struct serviced_query*)arg;
struct outside_network* outnet = sq->outnet;
struct timeval now;
int fallback_tcp = 0;
if(gettimeofday(&now, NULL) < 0) {
log_err("gettimeofday: %s", strerror(errno));
/* this option does not need current time */
error = NETEVENT_CLOSED;
}
sq->pending = NULL; /* removed after callback */
if(error == NETEVENT_TIMEOUT) {
int rto = 0;
sq->retry++;
if(!(rto=infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen,
-1, (time_t)now.tv_sec)))
log_err("out of memory in UDP exponential backoff");
if(sq->retry < OUTBOUND_UDP_RETRY) {
log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10,
&sq->addr, sq->addrlen);
if(!serviced_udp_send(sq, c->buffer)) {
serviced_callbacks(sq, NETEVENT_CLOSED, c, rep);
}
return 0;
}
if(rto >= RTT_MAX_TIMEOUT) {
fallback_tcp = 1;
/* UDP does not work, fallback to TCP below */
} else {
serviced_callbacks(sq, NETEVENT_TIMEOUT, c, rep);
return 0;
}
}
if(error == NETEVENT_NOERROR && sq->status == serviced_query_UDP_EDNS
&& (LDNS_RCODE_WIRE(ldns_buffer_begin(c->buffer))
== LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(
ldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOTIMPL)) {
/* note no EDNS, fallback without EDNS */
if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen,
-1, (time_t)now.tv_sec)) {
log_err("Out of memory caching no edns for host");
}
sq->status = serviced_query_UDP;
sq->retry = 0;
if(!serviced_udp_send(sq, c->buffer)) {
serviced_callbacks(sq, NETEVENT_CLOSED, c, rep);
}
return 0;
}
if(LDNS_TC_WIRE(ldns_buffer_begin(c->buffer)) ||
(error != NETEVENT_NOERROR && fallback_tcp) ) {
/* fallback to TCP */
/* this discards partial UDP contents */
if(sq->status == serviced_query_UDP_EDNS)
sq->status = serviced_query_TCP_EDNS;
else sq->status = serviced_query_TCP;
serviced_tcp_initiate(outnet, sq, c->buffer);
return 0;
}
/* yay! an answer */
if(now.tv_sec > sq->last_sent_time.tv_sec ||
(now.tv_sec == sq->last_sent_time.tv_sec &&
now.tv_usec > sq->last_sent_time.tv_usec)) {
/* convert from microseconds to milliseconds */
int roundtime = (now.tv_sec - sq->last_sent_time.tv_sec)*1000
+ ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000;
verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime);
log_assert(roundtime >= 0);
if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen,
roundtime, (time_t)now.tv_sec))
log_err("out of memory noting rtt.");
}
serviced_callbacks(sq, error, c, rep);
return 0;
}
/** find callback in list */
static struct service_callback*
callback_list_find(struct serviced_query* sq, void* cb_arg,
int (*arg_compare)(void*,void*))
{
struct service_callback* p;
for(p = sq->cblist; p; p = p->next) {
if(arg_compare(p->cb_arg, cb_arg))
return p;
}
return NULL;
}
struct serviced_query*
outnet_serviced_query(struct outside_network* outnet,
uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass,
uint16_t flags, int dnssec, struct sockaddr_storage* addr,
socklen_t addrlen, comm_point_callback_t* callback,
void* callback_arg, ldns_buffer* buff,
int (*arg_compare)(void*,void*))
{
struct serviced_query* sq;
struct service_callback* cb;
serviced_gen_query(buff, qname, qnamelen, qtype, qclass, flags);
sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen);
if(sq) {
/* see if it is a duplicate notification request for cb_arg */
if(callback_list_find(sq, callback_arg, arg_compare)) {
return sq;
}
}
if(!(cb = (struct service_callback*)malloc(sizeof(*cb))))
return NULL;
if(!sq) {
/* make new serviced query entry */
sq = serviced_create(outnet, buff, dnssec, addr, addrlen);
if(!sq) {
free(cb);
return NULL;
}
/* perform first network action */
if(!serviced_udp_send(sq, buff)) {
(void)rbtree_delete(outnet->serviced, sq);
free(sq->qbuf);
free(sq);
free(cb);
return NULL;
}
}
/* add callback to list of callbacks */
cb->cb = callback;
cb->cb_arg = callback_arg;
cb->next = sq->cblist;
sq->cblist = cb;
return sq;
}
/** remove callback from list */
static void
callback_list_remove(struct serviced_query* sq, void* cb_arg)
{
struct service_callback** pp = &sq->cblist;
while(*pp) {
if((*pp)->cb_arg == cb_arg) {
struct service_callback* del = *pp;
*pp = del->next;
free(del);
return;
}
pp = &(*pp)->next;
}
}
void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg)
{
if(!sq)
return;
callback_list_remove(sq, cb_arg);
/* if callbacks() routine scheduled deletion, let it do that */
if(!sq->cblist && !sq->to_be_deleted) {
rbnode_t* rem;
rem = rbtree_delete(sq->outnet->serviced, sq);
log_assert(rem); /* should be present */
serviced_delete(sq);
}
}
/** get memory used by waiting tcp entry (in use or not) */
static size_t
waiting_tcp_get_mem(struct waiting_tcp* w)
{
size_t s;
if(!w) return 0;
s = sizeof(*w) + w->pkt_len;
if(w->timer)
s += comm_timer_get_mem(w->timer);
return s;
}
size_t outnet_get_mem(struct outside_network* outnet)
{
size_t i;
struct waiting_tcp* w;
struct serviced_query* sq;
struct service_callback* sb;
size_t s = sizeof(*outnet) + sizeof(*outnet->base) +
sizeof(*outnet->udp_buff) +
ldns_buffer_capacity(outnet->udp_buff);
/* second buffer is not ours */
s += sizeof(struct comm_point*)*outnet->num_udp4;
for(i=0; i<outnet->num_udp4; i++)
s += comm_point_get_mem(outnet->udp4_ports[i]);
s += sizeof(struct comm_point*)*outnet->num_udp6;
for(i=0; i<outnet->num_udp6; i++)
s += comm_point_get_mem(outnet->udp6_ports[i]);
s += sizeof(struct pending_tcp*)*outnet->num_tcp;
for(i=0; i<outnet->num_tcp; i++) {
s += sizeof(struct pending_tcp);
s += comm_point_get_mem(outnet->tcp_conns[i]->c);
if(outnet->tcp_conns[i]->query)
s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query);
}
for(w=outnet->tcp_wait_first; w; w = w->next_waiting)
s += waiting_tcp_get_mem(w);
s += sizeof(*outnet->pending);
s += (sizeof(struct pending) + comm_timer_get_mem(NULL)) *
outnet->pending->count;
s += sizeof(*outnet->serviced);
s += outnet->svcd_overhead;
RBTREE_FOR(sq, struct serviced_query*, outnet->serviced) {
s += sizeof(*sq) + sq->qbuflen;
for(sb = sq->cblist; sb; sb = sb->next)
s += sizeof(*sb);
}
return s;
}
size_t
serviced_get_mem(struct serviced_query* sq)
{
struct service_callback* sb;
size_t s;
s = sizeof(*sq) + sq->qbuflen;
for(sb = sq->cblist; sb; sb = sb->next)
s += sizeof(*sb);
if(sq->status == serviced_query_UDP_EDNS ||
sq->status == serviced_query_UDP) {
s += sizeof(struct pending);
s += comm_timer_get_mem(NULL);
} else {
/* does not have size of the pkt pointer */
/* always has a timer except on malloc failures */
/* these sizes are part of the main outside network mem */
/*
s += sizeof(struct waiting_tcp);
s += comm_timer_get_mem(NULL);
*/
}
return s;
}