php-src/ext/hash/hash_whirlpool.c
Eddie Kohler ada776c84c Make HashContexts serializable.
* Modify php_hash_ops to contain the algorithm name and
  serialize and unserialize methods.

* Implement __serialize and __unserialize magic methods on
  HashContext.

Note that serialized HashContexts are not necessarily portable
between PHP versions or from architecture to architecture.
(Most are, though Keccak and slow SHA3s are not.)

An exception is thrown when an unsupported serialization is
attempted.

Because of security concerns, HASH_HMAC contexts are not
currently serializable; attempting to serialize one throws
an exception.

Serialization exposes the state of HashContext memory, so ensure
that memory is zeroed before use by allocating it with a new
php_hash_alloc_context function. Performance impact is
negligible.

Some hash internal states have logical pointers into a buffer,
or sponge, that absorbs input provided in bytes rather than
chunks. The unserialize functions for these hash functions
must validate that the logical pointers are all within bounds,
lest future hash operations cause out-of-bounds memory accesses.

* Adler32, CRC32, FNV, joaat: simple state, no buffer positions
* Gost, MD2, SHA3, Snefru, Tiger, Whirlpool: buffer positions
  must be validated
* MD4, MD5, SHA1, SHA2, haval, ripemd: buffer positions encoded
  bitwise, forced to within bounds on use; no need to validate
2020-06-30 14:30:33 +02:00

462 lines
16 KiB
C

/*
+----------------------------------------------------------------------+
| Copyright (c) The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Michael Wallner <mike@php.net> |
| Sara Golemon <pollita@php.net> |
+----------------------------------------------------------------------+
*/
#include "php_hash.h"
/*
* TODO: simplify Update and Final, those look ridiculously complex
* Mike, 2005-11-23
*/
#include "php_hash_whirlpool.h"
#include "php_hash_whirlpool_tables.h"
#define DIGESTBYTES 64
#define DIGESTBITS (8*DIGESTBYTES) /* 512 */
#define WBLOCKBYTES 64
#define WBLOCKBITS (8*WBLOCKBYTES) /* 512 */
#define LENGTHBYTES 32
#define LENGTHBITS (8*LENGTHBYTES) /* 256 */
static void WhirlpoolTransform(PHP_WHIRLPOOL_CTX *context)
{
int i, r;
uint64_t K[8]; /* the round key */
uint64_t block[8]; /* mu(buffer) */
uint64_t state[8]; /* the cipher state */
uint64_t L[8];
unsigned char *buffer = context->buffer.data;
/*
* map the buffer to a block:
*/
for (i = 0; i < 8; i++, buffer += 8) {
block[i] =
(((uint64_t)buffer[0] ) << 56) ^
(((uint64_t)buffer[1] & 0xffL) << 48) ^
(((uint64_t)buffer[2] & 0xffL) << 40) ^
(((uint64_t)buffer[3] & 0xffL) << 32) ^
(((uint64_t)buffer[4] & 0xffL) << 24) ^
(((uint64_t)buffer[5] & 0xffL) << 16) ^
(((uint64_t)buffer[6] & 0xffL) << 8) ^
(((uint64_t)buffer[7] & 0xffL) );
}
/*
* compute and apply K^0 to the cipher state:
*/
state[0] = block[0] ^ (K[0] = context->state[0]);
state[1] = block[1] ^ (K[1] = context->state[1]);
state[2] = block[2] ^ (K[2] = context->state[2]);
state[3] = block[3] ^ (K[3] = context->state[3]);
state[4] = block[4] ^ (K[4] = context->state[4]);
state[5] = block[5] ^ (K[5] = context->state[5]);
state[6] = block[6] ^ (K[6] = context->state[6]);
state[7] = block[7] ^ (K[7] = context->state[7]);
/*
* iterate over all rounds:
*/
for (r = 1; r <= R; r++) {
/*
* compute K^r from K^{r-1}:
*/
L[0] =
C0[(int)(K[0] >> 56) ] ^
C1[(int)(K[7] >> 48) & 0xff] ^
C2[(int)(K[6] >> 40) & 0xff] ^
C3[(int)(K[5] >> 32) & 0xff] ^
C4[(int)(K[4] >> 24) & 0xff] ^
C5[(int)(K[3] >> 16) & 0xff] ^
C6[(int)(K[2] >> 8) & 0xff] ^
C7[(int)(K[1] ) & 0xff] ^
rc[r];
L[1] =
C0[(int)(K[1] >> 56) ] ^
C1[(int)(K[0] >> 48) & 0xff] ^
C2[(int)(K[7] >> 40) & 0xff] ^
C3[(int)(K[6] >> 32) & 0xff] ^
C4[(int)(K[5] >> 24) & 0xff] ^
C5[(int)(K[4] >> 16) & 0xff] ^
C6[(int)(K[3] >> 8) & 0xff] ^
C7[(int)(K[2] ) & 0xff];
L[2] =
C0[(int)(K[2] >> 56) ] ^
C1[(int)(K[1] >> 48) & 0xff] ^
C2[(int)(K[0] >> 40) & 0xff] ^
C3[(int)(K[7] >> 32) & 0xff] ^
C4[(int)(K[6] >> 24) & 0xff] ^
C5[(int)(K[5] >> 16) & 0xff] ^
C6[(int)(K[4] >> 8) & 0xff] ^
C7[(int)(K[3] ) & 0xff];
L[3] =
C0[(int)(K[3] >> 56) ] ^
C1[(int)(K[2] >> 48) & 0xff] ^
C2[(int)(K[1] >> 40) & 0xff] ^
C3[(int)(K[0] >> 32) & 0xff] ^
C4[(int)(K[7] >> 24) & 0xff] ^
C5[(int)(K[6] >> 16) & 0xff] ^
C6[(int)(K[5] >> 8) & 0xff] ^
C7[(int)(K[4] ) & 0xff];
L[4] =
C0[(int)(K[4] >> 56) ] ^
C1[(int)(K[3] >> 48) & 0xff] ^
C2[(int)(K[2] >> 40) & 0xff] ^
C3[(int)(K[1] >> 32) & 0xff] ^
C4[(int)(K[0] >> 24) & 0xff] ^
C5[(int)(K[7] >> 16) & 0xff] ^
C6[(int)(K[6] >> 8) & 0xff] ^
C7[(int)(K[5] ) & 0xff];
L[5] =
C0[(int)(K[5] >> 56) ] ^
C1[(int)(K[4] >> 48) & 0xff] ^
C2[(int)(K[3] >> 40) & 0xff] ^
C3[(int)(K[2] >> 32) & 0xff] ^
C4[(int)(K[1] >> 24) & 0xff] ^
C5[(int)(K[0] >> 16) & 0xff] ^
C6[(int)(K[7] >> 8) & 0xff] ^
C7[(int)(K[6] ) & 0xff];
L[6] =
C0[(int)(K[6] >> 56) ] ^
C1[(int)(K[5] >> 48) & 0xff] ^
C2[(int)(K[4] >> 40) & 0xff] ^
C3[(int)(K[3] >> 32) & 0xff] ^
C4[(int)(K[2] >> 24) & 0xff] ^
C5[(int)(K[1] >> 16) & 0xff] ^
C6[(int)(K[0] >> 8) & 0xff] ^
C7[(int)(K[7] ) & 0xff];
L[7] =
C0[(int)(K[7] >> 56) ] ^
C1[(int)(K[6] >> 48) & 0xff] ^
C2[(int)(K[5] >> 40) & 0xff] ^
C3[(int)(K[4] >> 32) & 0xff] ^
C4[(int)(K[3] >> 24) & 0xff] ^
C5[(int)(K[2] >> 16) & 0xff] ^
C6[(int)(K[1] >> 8) & 0xff] ^
C7[(int)(K[0] ) & 0xff];
K[0] = L[0];
K[1] = L[1];
K[2] = L[2];
K[3] = L[3];
K[4] = L[4];
K[5] = L[5];
K[6] = L[6];
K[7] = L[7];
/*
* apply the r-th round transformation:
*/
L[0] =
C0[(int)(state[0] >> 56) ] ^
C1[(int)(state[7] >> 48) & 0xff] ^
C2[(int)(state[6] >> 40) & 0xff] ^
C3[(int)(state[5] >> 32) & 0xff] ^
C4[(int)(state[4] >> 24) & 0xff] ^
C5[(int)(state[3] >> 16) & 0xff] ^
C6[(int)(state[2] >> 8) & 0xff] ^
C7[(int)(state[1] ) & 0xff] ^
K[0];
L[1] =
C0[(int)(state[1] >> 56) ] ^
C1[(int)(state[0] >> 48) & 0xff] ^
C2[(int)(state[7] >> 40) & 0xff] ^
C3[(int)(state[6] >> 32) & 0xff] ^
C4[(int)(state[5] >> 24) & 0xff] ^
C5[(int)(state[4] >> 16) & 0xff] ^
C6[(int)(state[3] >> 8) & 0xff] ^
C7[(int)(state[2] ) & 0xff] ^
K[1];
L[2] =
C0[(int)(state[2] >> 56) ] ^
C1[(int)(state[1] >> 48) & 0xff] ^
C2[(int)(state[0] >> 40) & 0xff] ^
C3[(int)(state[7] >> 32) & 0xff] ^
C4[(int)(state[6] >> 24) & 0xff] ^
C5[(int)(state[5] >> 16) & 0xff] ^
C6[(int)(state[4] >> 8) & 0xff] ^
C7[(int)(state[3] ) & 0xff] ^
K[2];
L[3] =
C0[(int)(state[3] >> 56) ] ^
C1[(int)(state[2] >> 48) & 0xff] ^
C2[(int)(state[1] >> 40) & 0xff] ^
C3[(int)(state[0] >> 32) & 0xff] ^
C4[(int)(state[7] >> 24) & 0xff] ^
C5[(int)(state[6] >> 16) & 0xff] ^
C6[(int)(state[5] >> 8) & 0xff] ^
C7[(int)(state[4] ) & 0xff] ^
K[3];
L[4] =
C0[(int)(state[4] >> 56) ] ^
C1[(int)(state[3] >> 48) & 0xff] ^
C2[(int)(state[2] >> 40) & 0xff] ^
C3[(int)(state[1] >> 32) & 0xff] ^
C4[(int)(state[0] >> 24) & 0xff] ^
C5[(int)(state[7] >> 16) & 0xff] ^
C6[(int)(state[6] >> 8) & 0xff] ^
C7[(int)(state[5] ) & 0xff] ^
K[4];
L[5] =
C0[(int)(state[5] >> 56) ] ^
C1[(int)(state[4] >> 48) & 0xff] ^
C2[(int)(state[3] >> 40) & 0xff] ^
C3[(int)(state[2] >> 32) & 0xff] ^
C4[(int)(state[1] >> 24) & 0xff] ^
C5[(int)(state[0] >> 16) & 0xff] ^
C6[(int)(state[7] >> 8) & 0xff] ^
C7[(int)(state[6] ) & 0xff] ^
K[5];
L[6] =
C0[(int)(state[6] >> 56) ] ^
C1[(int)(state[5] >> 48) & 0xff] ^
C2[(int)(state[4] >> 40) & 0xff] ^
C3[(int)(state[3] >> 32) & 0xff] ^
C4[(int)(state[2] >> 24) & 0xff] ^
C5[(int)(state[1] >> 16) & 0xff] ^
C6[(int)(state[0] >> 8) & 0xff] ^
C7[(int)(state[7] ) & 0xff] ^
K[6];
L[7] =
C0[(int)(state[7] >> 56) ] ^
C1[(int)(state[6] >> 48) & 0xff] ^
C2[(int)(state[5] >> 40) & 0xff] ^
C3[(int)(state[4] >> 32) & 0xff] ^
C4[(int)(state[3] >> 24) & 0xff] ^
C5[(int)(state[2] >> 16) & 0xff] ^
C6[(int)(state[1] >> 8) & 0xff] ^
C7[(int)(state[0] ) & 0xff] ^
K[7];
state[0] = L[0];
state[1] = L[1];
state[2] = L[2];
state[3] = L[3];
state[4] = L[4];
state[5] = L[5];
state[6] = L[6];
state[7] = L[7];
}
/*
* apply the Miyaguchi-Preneel compression function:
*/
context->state[0] ^= state[0] ^ block[0];
context->state[1] ^= state[1] ^ block[1];
context->state[2] ^= state[2] ^ block[2];
context->state[3] ^= state[3] ^ block[3];
context->state[4] ^= state[4] ^ block[4];
context->state[5] ^= state[5] ^ block[5];
context->state[6] ^= state[6] ^ block[6];
context->state[7] ^= state[7] ^ block[7];
ZEND_SECURE_ZERO(state, sizeof(state));
}
PHP_HASH_API void PHP_WHIRLPOOLInit(PHP_WHIRLPOOL_CTX *context)
{
memset(context, 0, sizeof(*context));
}
PHP_HASH_API void PHP_WHIRLPOOLUpdate(PHP_WHIRLPOOL_CTX *context, const unsigned char *input, size_t len)
{
uint64_t sourceBits = len * 8;
int sourcePos = 0; /* index of leftmost source unsigned char containing data (1 to 8 bits). */
int sourceGap = (8 - ((int)sourceBits & 7)) & 7; /* space on source[sourcePos]. */
int bufferRem = context->buffer.bits & 7; /* occupied bits on buffer[bufferPos]. */
const unsigned char *source = input;
unsigned char *buffer = context->buffer.data;
unsigned char *bitLength = context->bitlength;
int bufferBits = context->buffer.bits;
int bufferPos = context->buffer.pos;
uint32_t b, carry;
int i;
/*
* tally the length of the added data:
*/
uint64_t value = sourceBits;
for (i = 31, carry = 0; i >= 0 && (carry != 0 || value != L64(0)); i--) {
carry += bitLength[i] + ((uint32_t)value & 0xff);
bitLength[i] = (unsigned char)carry;
carry >>= 8;
value >>= 8;
}
/*
* process data in chunks of 8 bits (a more efficient approach would be to take whole-word chunks):
*/
while (sourceBits > 8) {
/* N.B. at least source[sourcePos] and source[sourcePos+1] contain data. */
/*
* take a byte from the source:
*/
b = ((source[sourcePos] << sourceGap) & 0xff) |
((source[sourcePos + 1] & 0xff) >> (8 - sourceGap));
/*
* process this byte:
*/
buffer[bufferPos++] |= (unsigned char)(b >> bufferRem);
bufferBits += 8 - bufferRem; /* bufferBits = 8*bufferPos; */
if (bufferBits == DIGESTBITS) {
/*
* process data block:
*/
WhirlpoolTransform(context);
/*
* reset buffer:
*/
bufferBits = bufferPos = 0;
}
buffer[bufferPos] = (unsigned char) (b << (8 - bufferRem));
bufferBits += bufferRem;
/*
* proceed to remaining data:
*/
sourceBits -= 8;
sourcePos++;
}
/* now 0 <= sourceBits <= 8;
* furthermore, all data (if any is left) is in source[sourcePos].
*/
if (sourceBits > 0) {
b = (source[sourcePos] << sourceGap) & 0xff; /* bits are left-justified on b. */
/*
* process the remaining bits:
*/
buffer[bufferPos] |= b >> bufferRem;
} else {
b = 0;
}
if (bufferRem + sourceBits < 8) {
/*
* all remaining data fits on buffer[bufferPos],
* and there still remains some space.
*/
bufferBits += (int) sourceBits;
} else {
/*
* buffer[bufferPos] is full:
*/
bufferPos++;
bufferBits += 8 - bufferRem; /* bufferBits = 8*bufferPos; */
sourceBits -= 8 - bufferRem;
/* now 0 <= sourceBits < 8;
* furthermore, all data (if any is left) is in source[sourcePos].
*/
if (bufferBits == DIGESTBITS) {
/*
* process data block:
*/
WhirlpoolTransform(context);
/*
* reset buffer:
*/
bufferBits = bufferPos = 0;
}
buffer[bufferPos] = (unsigned char) (b << (8 - bufferRem));
bufferBits += (int)sourceBits;
}
context->buffer.bits = bufferBits;
context->buffer.pos = bufferPos;
}
PHP_HASH_API void PHP_WHIRLPOOLFinal(unsigned char digest[64], PHP_WHIRLPOOL_CTX *context)
{
int i;
unsigned char *buffer = context->buffer.data;
unsigned char *bitLength = context->bitlength;
int bufferBits = context->buffer.bits;
int bufferPos = context->buffer.pos;
/*
* append a '1'-bit:
*/
buffer[bufferPos] |= 0x80U >> (bufferBits & 7);
bufferPos++; /* all remaining bits on the current unsigned char are set to zero. */
/*
* pad with zero bits to complete (N*WBLOCKBITS - LENGTHBITS) bits:
*/
if (bufferPos > WBLOCKBYTES - LENGTHBYTES) {
if (bufferPos < WBLOCKBYTES) {
memset(&buffer[bufferPos], 0, WBLOCKBYTES - bufferPos);
}
/*
* process data block:
*/
WhirlpoolTransform(context);
/*
* reset buffer:
*/
bufferPos = 0;
}
if (bufferPos < WBLOCKBYTES - LENGTHBYTES) {
memset(&buffer[bufferPos], 0, (WBLOCKBYTES - LENGTHBYTES) - bufferPos);
}
bufferPos = WBLOCKBYTES - LENGTHBYTES;
/*
* append bit length of hashed data:
*/
memcpy(&buffer[WBLOCKBYTES - LENGTHBYTES], bitLength, LENGTHBYTES);
/*
* process data block:
*/
WhirlpoolTransform(context);
/*
* return the completed message digest:
*/
for (i = 0; i < DIGESTBYTES/8; i++) {
digest[0] = (unsigned char)(context->state[i] >> 56);
digest[1] = (unsigned char)(context->state[i] >> 48);
digest[2] = (unsigned char)(context->state[i] >> 40);
digest[3] = (unsigned char)(context->state[i] >> 32);
digest[4] = (unsigned char)(context->state[i] >> 24);
digest[5] = (unsigned char)(context->state[i] >> 16);
digest[6] = (unsigned char)(context->state[i] >> 8);
digest[7] = (unsigned char)(context->state[i] );
digest += 8;
}
ZEND_SECURE_ZERO(context, sizeof(*context));
}
static int php_whirlpool_unserialize(php_hashcontext_object *hash, zend_long magic, const zval *zv)
{
PHP_WHIRLPOOL_CTX *ctx = (PHP_WHIRLPOOL_CTX *) hash->context;
int r = FAILURE;
if (magic == PHP_HASH_SERIALIZE_MAGIC_SPEC
&& (r = php_hash_unserialize_spec(hash, zv, PHP_WHIRLPOOL_SPEC)) == SUCCESS
&& ctx->buffer.pos >= 0
&& ctx->buffer.pos < (int) sizeof(ctx->buffer.data)
&& ctx->buffer.bits >= ctx->buffer.pos * 8
&& ctx->buffer.bits < ctx->buffer.pos * 8 + 8) {
return SUCCESS;
} else {
return r != SUCCESS ? r : -2000;
}
}
const php_hash_ops php_hash_whirlpool_ops = {
"whirlpool",
(php_hash_init_func_t) PHP_WHIRLPOOLInit,
(php_hash_update_func_t) PHP_WHIRLPOOLUpdate,
(php_hash_final_func_t) PHP_WHIRLPOOLFinal,
php_hash_copy,
php_hash_serialize,
php_whirlpool_unserialize,
PHP_WHIRLPOOL_SPEC,
64,
64,
sizeof(PHP_WHIRLPOOL_CTX),
1
};