php-src/TSRM/TSRM.c
Ben Mansell 5d6cb2fc32 Speedup for pthread implementation. We make use of thread local storage
to allow access to the current thread's resources without having to
obtain the memory mutex and traverse our hash table. This is a big
performance win!
2001-03-06 15:07:57 +00:00

553 lines
14 KiB
C

/*
+----------------------------------------------------------------------+
| Thread Safe Resource Manager |
+----------------------------------------------------------------------+
| Copyright (c) 1999, 2000, Andi Gutmans, Sascha Schumann, Zeev Suraski|
| This source file is subject to the TSRM license, that is bundled |
| with this package in the file LICENSE |
+----------------------------------------------------------------------+
| Authors: Zeev Suraski <zeev@zend.com> |
+----------------------------------------------------------------------+
*/
#include "TSRM.h"
#ifdef ZTS
#include <stdio.h>
#include <stdlib.h>
#if HAVE_STDARG_H
#include <stdarg.h>
#endif
typedef struct _tsrm_tls_entry tsrm_tls_entry;
struct _tsrm_tls_entry {
void **storage;
int count;
THREAD_T thread_id;
tsrm_tls_entry *next;
};
typedef struct {
size_t size;
ts_allocate_ctor ctor;
ts_allocate_dtor dtor;
} tsrm_resource_type;
#define TSRM_SHUFFLE_RSRC_ID(rsrc_id) ((rsrc_id)+1)
#define TSRM_UNSHUFFLE_RSRC_ID(rsrc_id) ((rsrc_id)-1)
/* The memory manager table */
static tsrm_tls_entry **tsrm_tls_table=NULL;
static int tsrm_tls_table_size;
static ts_rsrc_id id_count;
/* The resource sizes table */
static tsrm_resource_type *resource_types_table=NULL;
static int resource_types_table_size;
static MUTEX_T tsmm_mutex; /* thread-safe memory manager mutex */
/* New thread handlers */
static void (*tsrm_new_thread_begin_handler)();
static void (*tsrm_new_thread_end_handler)();
/* Debug support */
int tsrm_error(int level, const char *format, ...);
/* Read a resource from a thread's resource storage */
void *ts_resource_read( tsrm_tls_entry *thread_resources, ts_rsrc_id id );
static int tsrm_error_level;
static FILE *tsrm_error_file;
#if TSRM_DEBUG
#define TSRM_ERROR tsrm_error
#define TSRM_SAFE_ARRAY_OFFSET(array, offset, range) (((offset)>=0 && (offset)<(range)) ? array[offset] : NULL)
#else
#define TSRM_ERROR
#define TSRM_SAFE_ARRAY_OFFSET(array, offset, range) array[offset]
#endif
#if defined(PTHREADS)
/* Thread local storage */
static pthread_key_t tls_key;
#endif
/* Startup TSRM (call once for the entire process) */
TSRM_API int tsrm_startup(int expected_threads, int expected_resources, int debug_level, char *debug_filename)
{
#if defined(GNUPTH)
pth_init();
#elif defined(PTHREADS)
pthread_key_create( &tls_key, 0 );
#endif
tsrm_error_file = stderr;
tsrm_error_set(debug_level, debug_filename);
tsrm_tls_table_size = expected_threads;
tsrm_tls_table = (tsrm_tls_entry **) calloc(tsrm_tls_table_size, sizeof(tsrm_tls_entry *));
if (!tsrm_tls_table) {
TSRM_ERROR(TSRM_ERROR_LEVEL_ERROR, "Unable to allocate TLS table");
return 0;
}
id_count=0;
resource_types_table_size = expected_resources;
resource_types_table = (tsrm_resource_type *) calloc(resource_types_table_size, sizeof(tsrm_resource_type));
if (!resource_types_table) {
TSRM_ERROR(TSRM_ERROR_LEVEL_ERROR, "Unable to allocate resource types table");
free(tsrm_tls_table);
tsrm_tls_table = NULL;
return 0;
}
tsmm_mutex = tsrm_mutex_alloc();
tsrm_new_thread_begin_handler = tsrm_new_thread_end_handler = NULL;
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Started up TSRM, %d expected threads, %d expected resources", expected_threads, expected_resources);
return 1;
}
/* Shutdown TSRM (call once for the entire process) */
TSRM_API void tsrm_shutdown(void)
{
int i;
if (tsrm_tls_table) {
for (i=0; i<tsrm_tls_table_size; i++) {
tsrm_tls_entry *p = tsrm_tls_table[i], *next_p;
while (p) {
int j;
next_p = p->next;
for (j=0; j<id_count; j++) {
free(p->storage[j]);
}
free(p->storage);
free(p);
p = next_p;
}
}
free(tsrm_tls_table);
tsrm_tls_table = NULL;
}
if (resource_types_table) {
free(resource_types_table);
resource_types_table=NULL;
}
tsrm_mutex_free(tsmm_mutex);
tsmm_mutex = NULL;
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Shutdown TSRM");
if (tsrm_error_file!=stderr) {
fclose(tsrm_error_file);
}
#if defined(GNUPTH)
pth_kill();
#elif defined(PTHREADS)
pthread_key_delete( tls_key );
#endif
}
/* allocates a new thread-safe-resource id */
TSRM_API ts_rsrc_id ts_allocate_id(size_t size, ts_allocate_ctor ctor, ts_allocate_dtor dtor)
{
ts_rsrc_id new_id;
int i;
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Obtaining a new resource id, %d bytes", size);
tsrm_mutex_lock(tsmm_mutex);
/* obtain a resource id */
new_id = id_count++;
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Obtained resource id %d", TSRM_SHUFFLE_RSRC_ID(new_id));
/* store the new resource type in the resource sizes table */
if (resource_types_table_size < id_count) {
resource_types_table = (tsrm_resource_type *) realloc(resource_types_table, sizeof(tsrm_resource_type)*id_count);
if (!resource_types_table) {
tsrm_mutex_unlock(tsmm_mutex);
TSRM_ERROR(TSRM_ERROR_LEVEL_ERROR, "Unable to allocate storage for resource");
return 0;
}
resource_types_table_size = id_count;
}
resource_types_table[new_id].size = size;
resource_types_table[new_id].ctor = ctor;
resource_types_table[new_id].dtor = dtor;
/* enlarge the arrays for the already active threads */
for (i=0; i<tsrm_tls_table_size; i++) {
tsrm_tls_entry *p = tsrm_tls_table[i];
while (p) {
if (p->count < id_count) {
int j;
p->storage = (void *) realloc(p->storage, sizeof(void *)*id_count);
for (j=p->count; j<id_count; j++) {
p->storage[j] = (void *) malloc(resource_types_table[j].size);
if (resource_types_table[j].ctor) {
resource_types_table[j].ctor(p->storage[j]);
}
}
p->count = id_count;
}
p = p->next;
}
}
tsrm_mutex_unlock(tsmm_mutex);
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Successfully allocated new resource id %d", TSRM_SHUFFLE_RSRC_ID(new_id));
return TSRM_SHUFFLE_RSRC_ID(new_id);
}
static void allocate_new_resource(tsrm_tls_entry **thread_resources_ptr, THREAD_T thread_id)
{
int i;
TSRM_ERROR(TSRM_ERROR_LEVEL_CORE, "Creating data structures for thread %x", thread_id);
(*thread_resources_ptr) = (tsrm_tls_entry *) malloc(sizeof(tsrm_tls_entry));
(*thread_resources_ptr)->storage = (void **) malloc(sizeof(void *)*id_count);
(*thread_resources_ptr)->count = id_count;
(*thread_resources_ptr)->thread_id = thread_id;
(*thread_resources_ptr)->next = NULL;
#if defined(PTHREADS)
/* Set thread local storage to this new thread resources structure */
pthread_setspecific( tls_key, (void *)*thread_resources_ptr );
#endif
if (tsrm_new_thread_begin_handler) {
tsrm_new_thread_begin_handler(thread_id);
}
for (i=0; i<id_count; i++) {
(*thread_resources_ptr)->storage[i] = (void *) malloc(resource_types_table[i].size);
if (resource_types_table[i].ctor) {
resource_types_table[i].ctor((*thread_resources_ptr)->storage[i]);
}
}
tsrm_mutex_unlock(tsmm_mutex);
if (tsrm_new_thread_end_handler) {
tsrm_new_thread_end_handler(thread_id);
}
}
/* fetches the requested resource for the current thread */
TSRM_API void *ts_resource_ex(ts_rsrc_id id, THREAD_T *th_id)
{
THREAD_T thread_id;
int hash_value;
tsrm_tls_entry *thread_resources;
if( !th_id ) {
#if defined(PTHREADS)
/* Fast path for looking up the resources for the current
* thread. Its used by just about every call to
* ts_resource_ex(). This avoids the need for a mutex lock
* and our hashtable lookup.
*/
thread_resources = pthread_getspecific( tls_key );
if( thread_resources ) {
TSRM_ERROR(TSRM_ERROR_LEVEL_INFO, "Fetching resource id %d for current thread %d", id, (long) thread_resources->thread_id );
return ts_resource_read( thread_resources, id );
}
#endif
thread_id = tsrm_thread_id();
} else {
thread_id = *th_id;
}
TSRM_ERROR(TSRM_ERROR_LEVEL_INFO, "Fetching resource id %d for thread %ld", id, (long) thread_id);
tsrm_mutex_lock(tsmm_mutex);
hash_value = THREAD_HASH_OF(thread_id, tsrm_tls_table_size);
thread_resources = tsrm_tls_table[hash_value];
if (!thread_resources) {
allocate_new_resource(&tsrm_tls_table[hash_value], thread_id);
return ts_resource_ex(id, &thread_id);
} else {
do {
if (thread_resources->thread_id == thread_id) {
break;
}
if (thread_resources->next) {
thread_resources = thread_resources->next;
} else {
allocate_new_resource(&thread_resources->next, thread_id);
return ts_resource_ex(id, &thread_id);
/*
* thread_resources = thread_resources->next;
* break;
*/
}
} while (thread_resources);
}
tsrm_mutex_unlock(tsmm_mutex);
return ts_resource_read( thread_resources, id );
}
/* Read a specific resource from the thread's resources.
* This is called outside of a mutex, so have to be aware about external
* changes to the structure as we read it.
*/
void *ts_resource_read( tsrm_tls_entry *thread_resources, ts_rsrc_id id )
{
void *resource;
resource = TSRM_SAFE_ARRAY_OFFSET(thread_resources->storage, TSRM_UNSHUFFLE_RSRC_ID(id), thread_resources->count);
if (resource) {
TSRM_ERROR(TSRM_ERROR_LEVEL_INFO, "Successfully fetched resource id %d for thread id %ld - %x", id, (long) thread_resources->thread_id, (long) resource);
} else {
TSRM_ERROR(TSRM_ERROR_LEVEL_ERROR, "Resource id %d is out of range (%d..%d)", id, TSRM_SHUFFLE_RSRC_ID(0), TSRM_SHUFFLE_RSRC_ID(thread_resources->count-1));
abort();
}
return resource;
}
/* frees all resources allocated for the current thread */
void ts_free_thread(void)
{
tsrm_tls_entry *thread_resources;
int i;
THREAD_T thread_id = tsrm_thread_id();
int hash_value;
tsrm_tls_entry *last=NULL;
tsrm_mutex_lock(tsmm_mutex);
hash_value = THREAD_HASH_OF(thread_id, tsrm_tls_table_size);
thread_resources = tsrm_tls_table[hash_value];
while (thread_resources) {
if (thread_resources->thread_id == thread_id) {
tsrm_mutex_unlock(tsmm_mutex);
for (i=0; i<thread_resources->count; i++) {
if (resource_types_table[i].dtor) {
resource_types_table[i].dtor(thread_resources->storage[i]);
}
}
for (i=0; i<thread_resources->count; i++) {
free(thread_resources->storage[i]);
}
tsrm_mutex_lock(tsmm_mutex);
free(thread_resources->storage);
if (last) {
last->next = thread_resources->next;
} else {
tsrm_tls_table[hash_value]=NULL;
}
#if defined(PTHREADS)
pthread_setspecific( tls_key, 0 );
#endif
free(thread_resources);
break;
}
if (thread_resources->next) {
last = thread_resources;
}
thread_resources = thread_resources->next;
}
tsrm_mutex_unlock(tsmm_mutex);
}
/* deallocates all occurrences of a given id */
void ts_free_id(ts_rsrc_id id)
{
}
/*
* Utility Functions
*/
/* Obtain the current thread id */
TSRM_API THREAD_T tsrm_thread_id(void)
{
#ifdef TSRM_WIN32
return GetCurrentThreadId();
#elif defined(GNUPTH)
return pth_self();
#elif defined(PTHREADS)
return pthread_self();
#elif defined(NSAPI)
return systhread_current();
#elif defined(PI3WEB)
return PIThread_getCurrent();
#endif
}
/* Allocate a mutex */
TSRM_API MUTEX_T tsrm_mutex_alloc(void)
{
MUTEX_T mutexp;
#ifdef TSRM_WIN32
mutexp = malloc(sizeof(CRITICAL_SECTION));
InitializeCriticalSection(mutexp);
#elif defined(GNUPTH)
mutexp = (MUTEX_T) malloc(sizeof(*mutexp));
pth_mutex_init(mutexp);
#elif defined(PTHREADS)
mutexp = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(mutexp,NULL);
#elif defined(NSAPI)
mutexp = crit_init();
#elif defined(PI3WEB)
mutexp = PIPlatform_allocLocalMutex();
#endif
#ifdef THR_DEBUG
printf("Mutex created thread: %d\n",mythreadid());
#endif
return( mutexp );
}
/* Free a mutex */
TSRM_API void tsrm_mutex_free(MUTEX_T mutexp)
{
if (mutexp) {
#ifdef TSRM_WIN32
DeleteCriticalSection(mutexp);
#elif defined(GNUPTH)
free(mutexp);
#elif defined(PTHREADS)
pthread_mutex_destroy(mutexp);
free(mutexp);
#elif defined(NSAPI)
crit_terminate(mutexp);
#elif defined(PI3WEB)
PISync_delete(mutexp)
#endif
}
#ifdef THR_DEBUG
printf("Mutex freed thread: %d\n",mythreadid());
#endif
}
/* Lock a mutex */
TSRM_API int tsrm_mutex_lock(MUTEX_T mutexp)
{
TSRM_ERROR(TSRM_ERROR_LEVEL_INFO, "Mutex locked thread: %ld", tsrm_thread_id());
#ifdef TSRM_WIN32
EnterCriticalSection(mutexp);
return 1;
#elif defined(GNUPTH)
return pth_mutex_acquire(mutexp, 0, NULL);
#elif defined(PTHREADS)
return pthread_mutex_lock(mutexp);
#elif defined(NSAPI)
return crit_enter(mutexp);
#elif defined(PI3WEB)
return PISync_lock(mutexp);
#endif
}
/* Unlock a mutex */
TSRM_API int tsrm_mutex_unlock(MUTEX_T mutexp)
{
TSRM_ERROR(TSRM_ERROR_LEVEL_INFO, "Mutex unlocked thread: %ld", tsrm_thread_id());
#ifdef TSRM_WIN32
LeaveCriticalSection(mutexp);
return 1;
#elif defined(GNUPTH)
return pth_mutex_release(mutexp);
#elif defined(PTHREADS)
return pthread_mutex_unlock(mutexp);
#elif defined(NSAPI)
return crit_exit(mutexp);
#elif defined(PI3WEB)
return PISync_unlock(mutexp);
#endif
}
TSRM_API void *tsrm_set_new_thread_begin_handler(void (*new_thread_begin_handler)(THREAD_T thread_id))
{
void *retval = (void *) tsrm_new_thread_begin_handler;
tsrm_new_thread_begin_handler = new_thread_begin_handler;
return retval;
}
TSRM_API void *tsrm_set_new_thread_end_handler(void (*new_thread_end_handler)(THREAD_T thread_id))
{
void *retval = (void *) tsrm_new_thread_end_handler;
tsrm_new_thread_end_handler = new_thread_end_handler;
return retval;
}
/*
* Debug support
*/
#if TSRM_DEBUG
int tsrm_error(int level, const char *format, ...)
{
if (level<=tsrm_error_level) {
va_list args;
int size;
fprintf(tsrm_error_file, "TSRM: ");
va_start(args, format);
size = vfprintf(tsrm_error_file, format, args);
va_end(args);
fprintf(tsrm_error_file, "\n");
fflush(tsrm_error_file);
return size;
} else {
return 0;
}
}
#endif
void tsrm_error_set(int level, char *debug_filename)
{
tsrm_error_level = level;
#if TSRM_DEBUG
if (tsrm_error_file!=stderr) { /* close files opened earlier */
fclose(tsrm_error_file);
}
if (debug_filename) {
tsrm_error_file = fopen(debug_filename, "w");
if (!tsrm_error_file) {
tsrm_error_file = stderr;
}
} else {
tsrm_error_file = stderr;
}
#endif
}
#endif /* ZTS */