php-src/Zend/Optimizer/scdf.c
Christoph M. Becker 2f4973fd88
Revert GH-10279
Cf. <https://github.com/php/php-src/pull/10220#issuecomment-1383739816>.

This reverts commit 45a128c9de.
This reverts commit 1eb71c3f15.
This reverts commit 492523a779.
This reverts commit c7a4633891.
This reverts commit 308adb915c.
This reverts commit cd27d5e07f.
This reverts commit c5933409b4.
This reverts commit 46371f4eb3.
This reverts commit 623e2e9fc6.
This reverts commit e7434c1247.
This reverts commit d28d323ca2.
This reverts commit 1a067b84ee.
This reverts commit a55c0c5fc3.
This reverts commit b5aeb3a4d4.
This reverts commit f061a035e4.
This reverts commit b088575119.
This reverts commit b1d48774a7.
This reverts commit 94f9a20ce6.
This reverts commit 4831e48708.
This reverts commit cd985de190.
This reverts commit 9521d21681.
This reverts commit d6136151e9.
2023-01-16 12:25:59 +01:00

276 lines
11 KiB
C

/*
+----------------------------------------------------------------------+
| Zend Engine, Sparse Conditional Data Flow Propagation Framework |
+----------------------------------------------------------------------+
| Copyright (c) The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| https://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Nikita Popov <nikic@php.net> |
+----------------------------------------------------------------------+
*/
#include "Optimizer/zend_optimizer_internal.h"
#include "Optimizer/scdf.h"
/* This defines a generic framework for sparse conditional dataflow propagation. The algorithm is
* based on "Sparse conditional constant propagation" by Wegman and Zadeck. We're using a
* generalized implementation as described in chapter 8.3 of the SSA book.
*
* Every SSA variable is associated with an element on a finite-height lattice, those value can only
* ever be lowered during the operation of the algorithm. If a value is lowered all instructions and
* phis using that value need to be reconsidered (this is done by adding the variable to a
* worklist). For phi functions the result is computed by applying the meet operation to the
* operands. This continues until a fixed point is reached.
*
* The algorithm is control-flow sensitive: All blocks except the start block are initially assumed
* to be unreachable. When considering a branch instruction, we determine the feasible successors
* based on the current state of the variable lattice. If a new edge becomes feasible we either have
* to mark the successor block executable and consider all instructions in it, or, if the target is
* already executable, we only have to reconsider the phi functions (as we only consider phi
* operands which are associated with a feasible edge).
*
* The generic framework requires the definition of three functions:
* * visit_instr() should recompute the lattice values of all SSA variables defined by an
* instruction.
* * visit_phi() should recompute the lattice value of the SSA variable defined by the phi. While
* doing this it should only consider operands for which scfg_is_edge_feasible() returns true.
* * get_feasible_successors() should determine the feasible successors for a branch instruction.
* Note that this callback only needs to handle conditional branches (with two successors).
*/
#if 0
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
void scdf_mark_edge_feasible(scdf_ctx *scdf, int from, int to) {
uint32_t edge = scdf_edge(&scdf->ssa->cfg, from, to);
if (zend_bitset_in(scdf->feasible_edges, edge)) {
/* We already handled this edge */
return;
}
DEBUG_PRINT("Marking edge %d->%d feasible\n", from, to);
zend_bitset_incl(scdf->feasible_edges, edge);
if (!zend_bitset_in(scdf->executable_blocks, to)) {
if (!zend_bitset_in(scdf->block_worklist, to)) {
DEBUG_PRINT("Adding block %d to worklist\n", to);
}
zend_bitset_incl(scdf->block_worklist, to);
} else {
/* Block is already executable, only a new edge became feasible.
* Reevaluate phi nodes to account for changed source operands. */
zend_ssa_block *ssa_block = &scdf->ssa->blocks[to];
zend_ssa_phi *phi;
for (phi = ssa_block->phis; phi; phi = phi->next) {
zend_bitset_excl(scdf->phi_var_worklist, phi->ssa_var);
scdf->handlers.visit_phi(scdf, phi);
}
}
}
void scdf_init(zend_optimizer_ctx *ctx, scdf_ctx *scdf, zend_op_array *op_array, zend_ssa *ssa) {
scdf->op_array = op_array;
scdf->ssa = ssa;
scdf->instr_worklist_len = zend_bitset_len(op_array->last);
scdf->phi_var_worklist_len = zend_bitset_len(ssa->vars_count);
scdf->block_worklist_len = zend_bitset_len(ssa->cfg.blocks_count);
scdf->instr_worklist = zend_arena_calloc(&ctx->arena,
scdf->instr_worklist_len + scdf->phi_var_worklist_len + 2 * scdf->block_worklist_len + zend_bitset_len(ssa->cfg.edges_count),
sizeof(zend_ulong));
scdf->phi_var_worklist = scdf->instr_worklist + scdf->instr_worklist_len;
scdf->block_worklist = scdf->phi_var_worklist + scdf->phi_var_worklist_len;
scdf->executable_blocks = scdf->block_worklist + scdf->block_worklist_len;
scdf->feasible_edges = scdf->executable_blocks + scdf->block_worklist_len;
zend_bitset_incl(scdf->block_worklist, 0);
zend_bitset_incl(scdf->executable_blocks, 0);
}
void scdf_solve(scdf_ctx *scdf, const char *name) {
zend_ssa *ssa = scdf->ssa;
DEBUG_PRINT("Start SCDF solve (%s)\n", name);
while (!zend_bitset_empty(scdf->instr_worklist, scdf->instr_worklist_len)
|| !zend_bitset_empty(scdf->phi_var_worklist, scdf->phi_var_worklist_len)
|| !zend_bitset_empty(scdf->block_worklist, scdf->block_worklist_len)
) {
int i;
while ((i = zend_bitset_pop_first(scdf->phi_var_worklist, scdf->phi_var_worklist_len)) >= 0) {
zend_ssa_phi *phi = ssa->vars[i].definition_phi;
ZEND_ASSERT(phi);
if (zend_bitset_in(scdf->executable_blocks, phi->block)) {
scdf->handlers.visit_phi(scdf, phi);
}
}
while ((i = zend_bitset_pop_first(scdf->instr_worklist, scdf->instr_worklist_len)) >= 0) {
int block_num = ssa->cfg.map[i];
if (zend_bitset_in(scdf->executable_blocks, block_num)) {
zend_basic_block *block = &ssa->cfg.blocks[block_num];
zend_op *opline = &scdf->op_array->opcodes[i];
zend_ssa_op *ssa_op = &ssa->ops[i];
if (opline->opcode == ZEND_OP_DATA) {
opline--;
ssa_op--;
}
scdf->handlers.visit_instr(scdf, opline, ssa_op);
if (i == block->start + block->len - 1) {
if (block->successors_count == 1) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
} else if (block->successors_count > 1) {
scdf->handlers.mark_feasible_successors(scdf, block_num, block, opline, ssa_op);
}
}
}
}
while ((i = zend_bitset_pop_first(scdf->block_worklist, scdf->block_worklist_len)) >= 0) {
/* This block is now live. Interpret phis and instructions in it. */
zend_basic_block *block = &ssa->cfg.blocks[i];
zend_ssa_block *ssa_block = &ssa->blocks[i];
DEBUG_PRINT("Pop block %d from worklist\n", i);
zend_bitset_incl(scdf->executable_blocks, i);
{
zend_ssa_phi *phi;
for (phi = ssa_block->phis; phi; phi = phi->next) {
zend_bitset_excl(scdf->phi_var_worklist, phi->ssa_var);
scdf->handlers.visit_phi(scdf, phi);
}
}
if (block->len == 0) {
/* Zero length blocks don't have a last instruction that would normally do this */
scdf_mark_edge_feasible(scdf, i, block->successors[0]);
} else {
zend_op *opline = NULL;
int j, end = block->start + block->len;
for (j = block->start; j < end; j++) {
opline = &scdf->op_array->opcodes[j];
zend_bitset_excl(scdf->instr_worklist, j);
if (opline->opcode != ZEND_OP_DATA) {
scdf->handlers.visit_instr(scdf, opline, &ssa->ops[j]);
}
}
if (block->successors_count == 1) {
scdf_mark_edge_feasible(scdf, i, block->successors[0]);
} else if (block->successors_count > 1) {
ZEND_ASSERT(opline && "Should have opline in non-empty block");
if (opline->opcode == ZEND_OP_DATA) {
opline--;
j--;
}
scdf->handlers.mark_feasible_successors(scdf, i, block, opline, &ssa->ops[j-1]);
}
}
}
}
}
/* If a live range starts in a reachable block and ends in an unreachable block, we should
* not eliminate the latter. While it cannot be reached, the FREE opcode of the loop var
* is necessary for the correctness of temporary compaction. */
static bool is_live_loop_var_free(
scdf_ctx *scdf, const zend_op *opline, const zend_ssa_op *ssa_op) {
if (!zend_optimizer_is_loop_var_free(opline)) {
return false;
}
int var = ssa_op->op1_use;
if (var < 0) {
return false;
}
zend_ssa_var *ssa_var = &scdf->ssa->vars[var];
uint32_t def_block;
if (ssa_var->definition >= 0) {
def_block = scdf->ssa->cfg.map[ssa_var->definition];
} else {
def_block = ssa_var->definition_phi->block;
}
return zend_bitset_in(scdf->executable_blocks, def_block);
}
static bool kept_alive_by_loop_var_free(scdf_ctx *scdf, const zend_basic_block *block) {
const zend_op_array *op_array = scdf->op_array;
const zend_cfg *cfg = &scdf->ssa->cfg;
if (!(cfg->flags & ZEND_FUNC_FREE_LOOP_VAR)) {
return false;
}
for (uint32_t i = block->start; i < block->start + block->len; i++) {
if (is_live_loop_var_free(scdf, &op_array->opcodes[i], &scdf->ssa->ops[i])) {
return true;
}
}
return false;
}
static uint32_t cleanup_loop_var_free_block(scdf_ctx *scdf, zend_basic_block *block) {
zend_ssa *ssa = scdf->ssa;
const zend_op_array *op_array = scdf->op_array;
const zend_cfg *cfg = &ssa->cfg;
int block_num = block - cfg->blocks;
uint32_t removed_ops = 0;
/* Removes phi nodes */
for (zend_ssa_phi *phi = ssa->blocks[block_num].phis; phi; phi = phi->next) {
zend_ssa_remove_uses_of_var(ssa, phi->ssa_var);
zend_ssa_remove_phi(ssa, phi);
}
for (uint32_t i = block->start; i < block->start + block->len; i++) {
zend_op *opline = &op_array->opcodes[i];
zend_ssa_op *ssa_op = &scdf->ssa->ops[i];
if (opline->opcode == ZEND_NOP
|| is_live_loop_var_free(scdf, opline, ssa_op)) {
continue;
}
/* While we have to preserve the loop var free, we can still remove other instructions
* in the block. */
zend_ssa_remove_defs_of_instr(ssa, ssa_op);
zend_ssa_remove_instr(ssa, opline, ssa_op);
removed_ops++;
}
zend_ssa_remove_block_from_cfg(ssa, block_num);
return removed_ops;
}
/* Removes unreachable blocks. This will remove both the instructions (and phis) in the
* blocks, as well as remove them from the successor / predecessor lists and mark them
* unreachable. Blocks already marked unreachable are not removed. */
uint32_t scdf_remove_unreachable_blocks(scdf_ctx *scdf) {
zend_ssa *ssa = scdf->ssa;
int i;
uint32_t removed_ops = 0;
for (i = 0; i < ssa->cfg.blocks_count; i++) {
zend_basic_block *block = &ssa->cfg.blocks[i];
if (!zend_bitset_in(scdf->executable_blocks, i) && (block->flags & ZEND_BB_REACHABLE)) {
if (!kept_alive_by_loop_var_free(scdf, block)) {
removed_ops += block->len;
zend_ssa_remove_block(scdf->op_array, ssa, i);
} else {
removed_ops += cleanup_loop_var_free_block(scdf, block);
}
}
}
return removed_ops;
}