/* 2.0.12: a new adaptation from the same original, this time * by Barend Gahrels. My attempt to incorporate alpha channel * into the result worked poorly and degraded the quality of * palette conversion even when the source contained no * alpha channel data. This version does not attempt to produce * an output file with transparency in some of the palette * indexes, which, in practice, doesn't look so hot anyway. TBB */ /* * gd_topal, adapted from jquant2.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains 2-pass color quantization (color mapping) routines. * These routines provide selection of a custom color map for an image, * followed by mapping of the image to that color map, with optional * Floyd-Steinberg dithering. * It is also possible to use just the second pass to map to an arbitrary * externally-given color map. * * Note: ordered dithering is not supported, since there isn't any fast * way to compute intercolor distances; it's unclear that ordered dither's * fundamental assumptions even hold with an irregularly spaced color map. */ #ifdef ORIGINAL_LIB_JPEG #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #else /* * THOMAS BOUTELL & BAREND GEHRELS, february 2003 * adapted the code to work within gd rather than within libjpeg. * If it is not working, it's not Thomas G. Lane's fault. */ /* * SETTING THIS ONE CAUSES STRIPED IMAGE * to be done: solve this * #define ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS */ #include "gd.h" #include "gdhelpers.h" #include #include /* (Re)define some defines known by libjpeg */ #define QUANT_2PASS_SUPPORTED #define RGB_RED 0 #define RGB_GREEN 1 #define RGB_BLUE 2 #define JSAMPLE unsigned char #define MAXJSAMPLE (gdMaxColors-1) #define BITS_IN_JSAMPLE 8 #define JSAMPROW int* #define JDIMENSION int #define METHODDEF(type) static type #define LOCAL(type) static type /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity. This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit. But some * C compilers implement >> with an unsigned shift. For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. * It is only applied with constant shift counts. SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define SHIFT_TEMPS INT32 shift_temp; #define RIGHT_SHIFT(x,shft) \ ((shift_temp = (x)) < 0 ? \ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ (shift_temp >> (shft))) #else #define SHIFT_TEMPS #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif #define range_limit(x) { if(x<0) x=0; if (x>255) x=255; } #ifndef INT16 #define INT16 short #endif #ifndef UINT16 #define UINT16 unsigned short #endif #ifndef INT32 #define INT32 int #endif #ifndef FAR #define FAR #endif #ifndef boolean #define boolean int #endif #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif #define input_buf (im->tpixels) #define output_buf (im->pixels) #endif #ifdef QUANT_2PASS_SUPPORTED /* * This module implements the well-known Heckbert paradigm for color * quantization. Most of the ideas used here can be traced back to * Heckbert's seminal paper * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. * * In the first pass over the image, we accumulate a histogram showing the * usage count of each possible color. To keep the histogram to a reasonable * size, we reduce the precision of the input; typical practice is to retain * 5 or 6 bits per color, so that 8 or 4 different input values are counted * in the same histogram cell. * * Next, the color-selection step begins with a box representing the whole * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires * considerable care. * * Heckbert-style quantizers vary a good deal in their policies for choosing * the "largest" box and deciding where to cut it. The particular policies * used here have proved out well in experimental comparisons, but better ones * may yet be found. * * In earlier versions of the IJG code, this module quantized in YCbCr color * space, processing the raw upsampled data without a color conversion step. * This allowed the color conversion math to be done only once per colormap * entry, not once per pixel. However, that optimization precluded other * useful optimizations (such as merging color conversion with upsampling) * and it also interfered with desired capabilities such as quantizing to an * externally-supplied colormap. We have therefore abandoned that approach. * The present code works in the post-conversion color space, typically RGB. * * To improve the visual quality of the results, we actually work in scaled * RGB space, giving G distances more weight than R, and R in turn more than * B. To do everything in integer math, we must use integer scale factors. * The 2/3/1 scale factors used here correspond loosely to the relative * weights of the colors in the NTSC grayscale equation. * If you want to use this code to quantize a non-RGB color space, you'll * probably need to change these scale factors. */ #define R_SCALE 2 /* scale R distances by this much */ #define G_SCALE 3 /* scale G distances by this much */ #define B_SCALE 1 /* and B by this much */ /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B * and B,G,R orders. If you define some other weird order in jmorecfg.h, * you'll get compile errors until you extend this logic. In that case * you'll probably want to tweak the histogram sizes too. */ #if RGB_RED == 0 #define C0_SCALE R_SCALE #endif #if RGB_BLUE == 0 #define C0_SCALE B_SCALE #endif #if RGB_GREEN == 1 #define C1_SCALE G_SCALE #endif #if RGB_RED == 2 #define C2_SCALE R_SCALE #endif #if RGB_BLUE == 2 #define C2_SCALE B_SCALE #endif /* * First we have the histogram data structure and routines for creating it. * * The number of bits of precision can be adjusted by changing these symbols. * We recommend keeping 6 bits for G and 5 each for R and B. * If you have plenty of memory and cycles, 6 bits all around gives marginally * better results; if you are short of memory, 5 bits all around will save * some space but degrade the results. * To maintain a fully accurate histogram, we'd need to allocate a "long" * (preferably unsigned long) for each cell. In practice this is overkill; * we can get by with 16 bits per cell. Few of the cell counts will overflow, * and clamping those that do overflow to the maximum value will give close- * enough results. This reduces the recommended histogram size from 256Kb * to 128Kb, which is a useful savings on PC-class machines. * (In the second pass the histogram space is re-used for pixel mapping data; * in that capacity, each cell must be able to store zero to the number of * desired colors. 16 bits/cell is plenty for that too.) * Since the JPEG code is intended to run in small memory model on 80x86 * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that * on 80x86 machines, the pointer row is in near memory but the actual * arrays are in far memory (same arrangement as we use for image arrays). */ #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ /* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */ #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ #define HIST_C1_BITS 6 /* bits of precision in G histogram */ #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ /* Number of elements along histogram axes. */ #define HIST_C0_ELEMS (1<cquantize; #endif register JSAMPROW ptr; register histptr histp; register hist3d histogram = cquantize->histogram; int row; JDIMENSION col; #ifdef ORIGINAL_LIB_JPEG JDIMENSION width = cinfo->output_width; #else int width = im->sx; int num_rows = im->sy; #endif for (row = 0; row < num_rows; row++) { ptr = input_buf[row]; for (col = width; col > 0; col--) { #ifdef ORIGINAL_LIB_JPEG int r = GETJSAMPLE(ptr[0]) >> C0_SHIFT; int g = GETJSAMPLE(ptr[1]) >> C1_SHIFT; int b = GETJSAMPLE(ptr[2]) >> C2_SHIFT; #else int r = gdTrueColorGetRed(*ptr) >> C0_SHIFT; int g = gdTrueColorGetGreen(*ptr) >> C1_SHIFT; int b = gdTrueColorGetBlue(*ptr) >> C2_SHIFT; /* 2.0.12: Steven Brown: support a single totally transparent color in the original. */ if ((im->transparent >= 0) && (*ptr == im->transparent)) { ptr++; continue; } #endif /* get pixel value and index into the histogram */ histp = &histogram[r][g][b]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) == 0) { (*histp)--; } #ifdef ORIGINAL_LIB_JPEG ptr += 3; #else ptr++; #endif } } } /* * Next we have the really interesting routines: selection of a colormap * given the completed histogram. * These routines work with a list of "boxes", each representing a rectangular * subset of the input color space (to histogram precision). */ typedef struct { /* The bounds of the box (inclusive); expressed as histogram indexes */ int c0min, c0max; int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ INT32 volume; /* The number of nonzero histogram cells within this box */ long colorcount; } box; typedef box *boxptr; LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes) /* Find the splittable box with the largest color population */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which; } LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes) /* Find the splittable box with the largest (scaled) volume */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register INT32 maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which; } LOCAL (void) #ifndef ORIGINAL_LIB_JPEG update_box (gdImagePtr im, my_cquantize_ptr cquantize, boxptr boxp) { #else update_box (j_decompress_ptr cinfo, boxptr boxp) /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ /* and recompute its volume and population */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; #endif hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; INT32 dist0, dist1, dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; if (c0max > c0min) { for (c0 = c0min; c0 <= c0max; c0++) { for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } } } } } have_c0min: if (c0max > c0min) { for (c0 = c0max; c0 >= c0min; c0--) { for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } } } } } have_c0max: if (c1max > c1min) { for (c1 = c1min; c1 <= c1max; c1++) { for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } } } } } have_c1min: if (c1max > c1min) { for (c1 = c1max; c1 >= c1min; c1--) { for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } } } } } have_c1max: if (c2max > c2min) { for (c2 = c2min; c2 <= c2max; c2++) { for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) { if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } } } } } have_c2min: if (c2max > c2min) { for (c2 = c2max; c2 >= c2min; c2--) { for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) { if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } } } } } have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) { for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) { if (*histp != 0) { ccount++; } } } } boxp->colorcount = ccount; } LOCAL (int) #ifdef ORIGINAL_LIB_JPEG median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors) #else median_cut (gdImagePtr im, my_cquantize_ptr cquantize, boxptr boxlist, int numboxes, int desired_colors) #endif /* Repeatedly select and split the largest box until we have enough boxes */ { int n, lb; int c0, c1, c2, cmax; register boxptr b1, b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes * 2 <= desired_colors) { b1 = find_biggest_color_pop(boxlist, numboxes); } else { b1 = find_biggest_volume(boxlist, numboxes); } if (b1 == NULL) { /* no splittable boxes left! */ break; } b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */ #if RGB_RED == 0 cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; } #else cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; } #endif /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb + 1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb + 1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb + 1; break; } /* Update stats for boxes */ #ifdef ORIGINAL_LIB_JPEG update_box(cinfo, b1); update_box(cinfo, b2); #else update_box(im, cquantize, b1); update_box(im, cquantize, b2); #endif numboxes++; } return numboxes; } LOCAL (void) #ifndef ORIGINAL_LIB_JPEG compute_color (gdImagePtr im, my_cquantize_ptr cquantize, boxptr boxp, int icolor) { #else compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) /* Compute representative color for a box, put it in colormap[icolor] */ { /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; #endif hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; long count; long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) { for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; } } } } #ifdef ORIGINAL_LIB_JPEG cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total >> 1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total >> 1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total >> 1)) / total); #else im->red[icolor] = (int) ((c0total + (total >> 1)) / total); im->green[icolor] = (int) ((c1total + (total >> 1)) / total); im->blue[icolor] = (int) ((c2total + (total >> 1)) / total); #endif } LOCAL (void) #ifdef ORIGINAL_LIB_JPEG select_colors (j_decompress_ptr cinfo, int desired_colors) #else select_colors (gdImagePtr im, my_cquantize_ptr cquantize, int desired_colors) #endif /* Master routine for color selection */ { boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */ #ifdef ORIGINAL_LIB_JPEG boxlist = (boxptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF (box)); #else boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box)); #endif /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; #ifdef ORIGINAL_LIB_JPEG /* Shrink it to actually-used volume and set its statistics */ update_box(cinfo, &boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) { compute_color(cinfo, &boxlist[i], i); } cinfo->actual_number_of_colors = numboxes; TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); #else /* Shrink it to actually-used volume and set its statistics */ update_box(im, cquantize, &boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(im, cquantize, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) { compute_color(im, cquantize, &boxlist[i], i); } im->colorsTotal = numboxes; /* If we had a pure transparency color, add it as the last palette entry. * Skip incrementing the color count so that the dither / matching phase * won't use it on pixels that shouldn't have been transparent. We'll * increment it after all that finishes. */ if (im->transparent >= 0) { /* Save the transparent color. */ im->red[im->colorsTotal] = gdTrueColorGetRed(im->transparent); im->green[im->colorsTotal] = gdTrueColorGetGreen(im->transparent); im->blue[im->colorsTotal] = gdTrueColorGetBlue(im->transparent); im->alpha[im->colorsTotal] = gdAlphaTransparent; im->open[im->colorsTotal] = 0; } gdFree(boxlist); #endif } /* * These routines are concerned with the time-critical task of mapping input * colors to the nearest color in the selected colormap. * * We re-use the histogram space as an "inverse color map", essentially a * cache for the results of nearest-color searches. All colors within a * histogram cell will be mapped to the same colormap entry, namely the one * closest to the cell's center. This may not be quite the closest entry to * the actual input color, but it's almost as good. A zero in the cache * indicates we haven't found the nearest color for that cell yet; the array * is cleared to zeroes before starting the mapping pass. When we find the * nearest color for a cell, its colormap index plus one is recorded in the * cache for future use. The pass2 scanning routines call fill_inverse_cmap * when they need to use an unfilled entry in the cache. * * Our method of efficiently finding nearest colors is based on the "locally * sorted search" idea described by Heckbert and on the incremental distance * calculation described by Spencer W. Thomas in chapter III.1 of Graphics * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that * the distances from a given colormap entry to each cell of the histogram can * be computed quickly using an incremental method: the differences between * distances to adjacent cells themselves differ by a constant. This allows a * fairly fast implementation of the "brute force" approach of computing the * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). * The work array elements have to be INT32s, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the * nearest colors for only the cells within a small subbox of the histogram. * The work array need be only as big as the subbox, so the memory usage * problem is solved. Furthermore, we need not fill subboxes that are never * referenced in pass2; many images use only part of the color gamut, so a * fair amount of work is saved. An additional advantage of this * approach is that we can apply Heckbert's locality criterion to quickly * eliminate colormap entries that are far away from the subbox; typically * three-fourths of the colormap entries are rejected by Heckbert's criterion, * and we need not compute their distances to individual cells in the subbox. * The speed of this approach is heavily influenced by the subbox size: too * small means too much overhead, too big loses because Heckbert's criterion * can't eliminate as many colormap entries. Empirically the best subbox * size seems to be about 1/512th of the histogram (1/8th in each direction). * * Thomas' article also describes a refined method which is asymptotically * faster than the brute-force method, but it is also far more complex and * cannot efficiently be applied to small subboxes. It is therefore not * useful for programs intended to be portable to DOS machines. On machines * with plenty of memory, filling the whole histogram in one shot with Thomas' * refined method might be faster than the present code --- but then again, * it might not be any faster, and it's certainly more complicated. */ /* log2(histogram cells in update box) for each axis; this can be adjusted */ #define BOX_C0_LOG (HIST_C0_BITS-3) #define BOX_C1_LOG (HIST_C1_BITS-3) #define BOX_C2_LOG (HIST_C2_BITS-3) #define BOX_C0_ELEMS (1<actual_number_of_colors; #else int numcolors = im->colorsTotal; #endif int maxc0, maxc1, maxc2; int centerc0, centerc1, centerc2; int i, x, ncolors; INT32 minmaxdist, min_dist, max_dist, tdist; INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ /* Compute true coordinates of update box's upper corner and center. * Actually we compute the coordinates of the center of the upper-corner * histogram cell, which are the upper bounds of the volume we care about. * Note that since ">>" rounds down, the "center" values may be closer to * min than to max; hence comparisons to them must be "<=", not "<". */ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); centerc0 = (minc0 + maxc0) >> 1; maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); centerc1 = (minc1 + maxc1) >> 1; maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); centerc2 = (minc2 + maxc2) >> 1; /* For each color in colormap, find: * 1. its minimum squared-distance to any point in the update box * (zero if color is within update box); * 2. its maximum squared-distance to any point in the update box. * Both of these can be found by considering only the corners of the box. * We save the minimum distance for each color in mindist[]; * only the smallest maximum distance is of interest. */ minmaxdist = 0x7FFFFFFFL; for (i = 0; i < numcolors; i++) { /* We compute the squared-c0-distance term, then add in the other two. */ #ifdef ORIGINAL_LIB_JPEG x = GETJSAMPLE(cinfo->colormap[0][i]); #else x = im->red[i]; #endif if (x < minc0) { tdist = (x - minc0) * C0_SCALE; min_dist = tdist * tdist; tdist = (x - maxc0) * C0_SCALE; max_dist = tdist * tdist; } else if (x > maxc0) { tdist = (x - maxc0) * C0_SCALE; min_dist = tdist * tdist; tdist = (x - minc0) * C0_SCALE; max_dist = tdist * tdist; } else { /* within cell range so no contribution to min_dist */ min_dist = 0; if (x <= centerc0) { tdist = (x - maxc0) * C0_SCALE; max_dist = tdist * tdist; } else { tdist = (x - minc0) * C0_SCALE; max_dist = tdist * tdist; } } #ifdef ORIGINAL_LIB_JPEG x = GETJSAMPLE(cinfo->colormap[1][i]); #else x = im->green[i]; #endif if (x < minc1) { tdist = (x - minc1) * C1_SCALE; min_dist += tdist * tdist; tdist = (x - maxc1) * C1_SCALE; max_dist += tdist * tdist; } else if (x > maxc1) { tdist = (x - maxc1) * C1_SCALE; min_dist += tdist * tdist; tdist = (x - minc1) * C1_SCALE; max_dist += tdist * tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc1) { tdist = (x - maxc1) * C1_SCALE; max_dist += tdist * tdist; } else { tdist = (x - minc1) * C1_SCALE; max_dist += tdist * tdist; } } #ifdef ORIGINAL_LIB_JPEG x = GETJSAMPLE (cinfo->colormap[2][i]); #else x = im->blue[i]; #endif if (x < minc2) { tdist = (x - minc2) * C2_SCALE; min_dist += tdist * tdist; tdist = (x - maxc2) * C2_SCALE; max_dist += tdist * tdist; } else if (x > maxc2) { tdist = (x - maxc2) * C2_SCALE; min_dist += tdist * tdist; tdist = (x - minc2) * C2_SCALE; max_dist += tdist * tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc2) { tdist = (x - maxc2) * C2_SCALE; max_dist += tdist * tdist; } else { tdist = (x - minc2) * C2_SCALE; max_dist += tdist * tdist; } } mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } /* Now we know that no cell in the update box is more than minmaxdist * away from some colormap entry. Therefore, only colors that are * within minmaxdist of some part of the box need be considered. */ ncolors = 0; for (i = 0; i < numcolors; i++) { if (mindist[i] <= minmaxdist) { colorlist[ncolors++] = (JSAMPLE) i; } } return ncolors; } LOCAL (void) find_best_colors ( #ifdef ORIGINAL_LIB_JPEG j_decompress_ptr cinfo, #else gdImagePtr im, my_cquantize_ptr cquantize, #endif int minc0, int minc1, int minc2, int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) /* Find the closest colormap entry for each cell in the update box, * given the list of candidate colors prepared by find_nearby_colors. * Return the indexes of the closest entries in the bestcolor[] array. * This routine uses Thomas' incremental distance calculation method to * find the distance from a colormap entry to successive cells in the box. */ { int ic0, ic1, ic2; int i, icolor; register INT32 *bptr; /* pointer into bestdist[] array */ JSAMPLE *cptr; /* pointer into bestcolor[] array */ INT32 dist0, dist1; /* initial distance values */ register INT32 dist2; /* current distance in inner loop */ INT32 xx0, xx1; /* distance increments */ register INT32 xx2; INT32 inc0, inc1, inc2; /* initial values for increments */ /* This array holds the distance to the nearest-so-far color for each cell */ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist; for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--) { *bptr++ = 0x7FFFFFFFL; } /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) for (i = 0; i < numcolors; i++) { int r, g, b; #ifdef ORIGINAL_LIB_JPEG icolor = GETJSAMPLE(colorlist[i]); r = GETJSAMPLE(cinfo->colormap[0][icolor]); g = GETJSAMPLE(cinfo->colormap[1][icolor]); b = GETJSAMPLE(cinfo->colormap[2][icolor]); #else icolor = colorlist[i]; r = im->red[icolor]; g = im->green[icolor]; b = im->blue[icolor]; #endif /* Compute (square of) distance from minc0/c1/c2 to this color */ inc0 = (minc0 - r) * C0_SCALE; dist0 = inc0 * inc0; inc1 = (minc1 - g) * C1_SCALE; dist0 += inc1 * inc1; inc2 = (minc2 - b) * C2_SCALE; dist0 += inc2 * inc2; /* Form the initial difference increments */ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; /* Now loop over all cells in box, updating distance per Thomas method */ bptr = bestdist; cptr = bestcolor; xx0 = inc0; for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) { dist1 = dist0; xx1 = inc1; for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) { dist2 = dist1; xx2 = inc2; for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) { if (dist2 < *bptr) { *bptr = dist2; *cptr = (JSAMPLE) icolor; } dist2 += xx2; xx2 += 2 * STEP_C2 * STEP_C2; bptr++; cptr++; } dist1 += xx1; xx1 += 2 * STEP_C1 * STEP_C1; } dist0 += xx0; xx0 += 2 * STEP_C0 * STEP_C0; } } } LOCAL (void) fill_inverse_cmap ( #ifdef ORIGINAL_LIB_JPEG j_decompress_ptr cinfo, #else gdImagePtr im, my_cquantize_ptr cquantize, #endif int c0, int c1, int c2) /* Fill the inverse-colormap entries in the update box that contains */ /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ /* we can fill as many others as we wish.) */ { #ifdef ORIGINAL_LIB_JPEG my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; #endif hist3d histogram = cquantize->histogram; int minc0, minc1, minc2; /* lower left corner of update box */ int ic0, ic1, ic2; register JSAMPLE *cptr; /* pointer into bestcolor[] array */ register histptr cachep; /* pointer into main cache array */ /* This array lists the candidate colormap indexes. */ JSAMPLE colorlist[MAXNUMCOLORS]; int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Convert cell coordinates to update box ID */ c0 >>= BOX_C0_LOG; c1 >>= BOX_C1_LOG; c2 >>= BOX_C2_LOG; /* Compute true coordinates of update box's origin corner. * Actually we compute the coordinates of the center of the corner * histogram cell, which are the lower bounds of the volume we care about. */ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ #ifdef ORIGINAL_LIB_JPEG numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); /* Determine the actually nearest colors. */ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, bestcolor); #else numcolors = find_nearby_colors(im, cquantize, minc0, minc1, minc2, colorlist); find_best_colors(im, cquantize, minc0, minc1, minc2, numcolors, colorlist, bestcolor); #endif /* Save the best color numbers (plus 1) in the main cache array */ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ c1 <<= BOX_C1_LOG; c2 <<= BOX_C2_LOG; cptr = bestcolor; for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { cachep = &histogram[c0 + ic0][c1 + ic1][c2]; for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { #ifdef ORIGINAL_LIB_JPEG *cachep++ = (histcell) (GETJSAMPLE (*cptr++) + 1); #else *cachep++ = (histcell) ((*cptr++) + 1); #endif } } } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF (void) #ifndef ORIGINAL_LIB_JPEG pass2_no_dither (gdImagePtr im, my_cquantize_ptr cquantize) { register int *inptr; register unsigned char *outptr; int width = im->sx; int num_rows = im->sy; #else pass2_no_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register JSAMPROW inptr, outptr; JDIMENSION width = cinfo->output_width; #endif hist3d histogram = cquantize->histogram; register int c0, c1, c2; int row; JDIMENSION col; register histptr cachep; for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; for (col = width; col > 0; col--){ /* get pixel value and index into the cache */ int r, g, b; #ifdef ORIGINAL_LIB_JPEG r = GETJSAMPLE(*inptr++); g = GETJSAMPLE(*inptr++); b = GETJSAMPLE(*inptr++); #else r = gdTrueColorGetRed(*inptr); g = gdTrueColorGetGreen(*inptr); b = gdTrueColorGetBlue(*inptr++); /* If the pixel is transparent, we assign it the palette index that * will later be added at the end of the palette as the transparent * index. */ if ((im->transparent >= 0) && (im->transparent == *inptr)) { *outptr++ = im->colorsTotal; continue; } #endif c0 = r >> C0_SHIFT; c1 = g >> C1_SHIFT; c2 = b >> C2_SHIFT; cachep = &histogram[c0][c1][c2]; /* If we have not seen this color before, find nearest colormap entry * and update the cache */ if (*cachep == 0) { #ifdef ORIGINAL_LIB_JPEG fill_inverse_cmap(cinfo, c0, c1, c2); #else fill_inverse_cmap(im, cquantize, c0, c1, c2); #endif } /* Now emit the colormap index for this cell */ #ifdef ORIGINAL_LIB_JPEG *outptr++ = (JSAMPLE) (*cachep - 1); #else *outptr++ = (*cachep - 1); #endif } } } METHODDEF (void) #ifndef ORIGINAL_LIB_JPEG pass2_fs_dither (gdImagePtr im, my_cquantize_ptr cquantize) { #else pass2_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPROW inptr; /* => current input pixel */ #endif hist3d histogram = cquantize->histogram; register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ register FSERRPTR errorptr; /* => fserrors[] at column before current */ histptr cachep; int dir; /* +1 or -1 depending on direction */ int dir3; /* 3*dir, for advancing inptr & errorptr */ int row; JDIMENSION col; #ifdef ORIGINAL_LIB_JPEG JSAMPROW outptr; /* => current output pixel */ JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; #else int *inptr; /* => current input pixel */ unsigned char *outptr; /* => current output pixel */ int width = im->sx; int num_rows = im->sy; int *colormap0 = im->red; int *colormap1 = im->green; int *colormap2 = im->blue; #endif int *error_limit = cquantize->error_limiter; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ inptr += (width - 1) * 3; /* so point to rightmost pixel */ outptr += width - 1; dir = -1; dir3 = -3; errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */ #ifdef ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS cquantize->on_odd_row = FALSE; /* flip for next time */ #endif } else { /* work left to right in this row */ dir = 1; dir3 = 3; errorptr = cquantize->fserrors; /* => entry before first real column */ #ifdef ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS cquantize->on_odd_row = TRUE; /* flip for next time */ #endif } /* Preset error values: no error propagated to first pixel from left */ cur0 = cur1 = cur2 = 0; /* and no error propagated to row below yet */ belowerr0 = belowerr1 = belowerr2 = 0; bpreverr0 = bpreverr1 = bpreverr2 = 0; for (col = width; col > 0; col--) { /* If this pixel is transparent, we want to assign it to the special * transparency color index past the end of the palette rather than * go through matching / dithering. */ if ((im->transparent >= 0) && (*inptr == im->transparent)) { *outptr = im->colorsTotal; errorptr[0] = 0; errorptr[1] = 0; errorptr[2] = 0; errorptr[3] = 0; inptr += dir; outptr += dir; errorptr += dir3; continue; } /* curN holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4); cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4); cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4); /* Limit the error using transfer function set by init_error_limit. * See comments with init_error_limit for rationale. */ cur0 = error_limit[cur0]; cur1 = error_limit[cur1]; cur2 = error_limit[cur2]; /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE (or less with error limiting); * this sets the required size of the range_limit array. */ #ifdef ORIGINAL_LIB_JPEG cur0 += GETJSAMPLE (inptr[0]); cur1 += GETJSAMPLE (inptr[1]); cur2 += GETJSAMPLE (inptr[2]); cur0 = GETJSAMPLE (range_limit[cur0]); cur1 = GETJSAMPLE (range_limit[cur1]); cur2 = GETJSAMPLE (range_limit[cur2]); #else cur0 += gdTrueColorGetRed (*inptr); cur1 += gdTrueColorGetGreen (*inptr); cur2 += gdTrueColorGetBlue (*inptr); range_limit (cur0); range_limit (cur1); range_limit (cur2); #endif /* Index into the cache with adjusted pixel value */ cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT]; /* If we have not seen this color before, find nearest colormap */ /* entry and update the cache */ if (*cachep == 0) { #ifdef ORIGINAL_LIB_JPEG fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT); #else fill_inverse_cmap(im, cquantize, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT); #endif } /* Now emit the colormap index for this cell */ { register int pixcode = *cachep - 1; *outptr = (JSAMPLE) pixcode; /* Compute representation error for this pixel */ #define GETJSAMPLE cur0 -= GETJSAMPLE(colormap0[pixcode]); cur1 -= GETJSAMPLE(colormap1[pixcode]); cur2 -= GETJSAMPLE(colormap2[pixcode]); #undef GETJSAMPLE } /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ { register LOCFSERROR bnexterr, delta; bnexterr = cur0; /* Process component 0 */ delta = cur0 * 2; cur0 += delta; /* form error * 3 */ errorptr[0] = (FSERROR) (bpreverr0 + cur0); cur0 += delta; /* form error * 5 */ bpreverr0 = belowerr0 + cur0; belowerr0 = bnexterr; cur0 += delta; /* form error * 7 */ bnexterr = cur1; /* Process component 1 */ delta = cur1 * 2; cur1 += delta; /* form error * 3 */ errorptr[1] = (FSERROR) (bpreverr1 + cur1); cur1 += delta; /* form error * 5 */ bpreverr1 = belowerr1 + cur1; belowerr1 = bnexterr; cur1 += delta; /* form error * 7 */ bnexterr = cur2; /* Process component 2 */ delta = cur2 * 2; cur2 += delta; /* form error * 3 */ errorptr[2] = (FSERROR) (bpreverr2 + cur2); cur2 += delta; /* form error * 5 */ bpreverr2 = belowerr2 + cur2; belowerr2 = bnexterr; cur2 += delta; /* form error * 7 */ } /* At this point curN contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ #ifdef ORIGINAL_LIB_JPEG inptr += dir3; /* Advance pixel pointers to next column */ #else inptr += dir; /* Advance pixel pointers to next column */ #endif outptr += dir; errorptr += dir3; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error values into the * final fserrors[] entry. Note we need not unload belowerrN because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ errorptr[1] = (FSERROR) bpreverr1; errorptr[2] = (FSERROR) bpreverr2; } } /* * Initialize the error-limiting transfer function (lookup table). * The raw F-S error computation can potentially compute error values of up to * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be * much less, otherwise obviously wrong pixels will be created. (Typical * effects include weird fringes at color-area boundaries, isolated bright * pixels in a dark area, etc.) The standard advice for avoiding this problem * is to ensure that the "corners" of the color cube are allocated as output * colors; then repeated errors in the same direction cannot cause cascading * error buildup. However, that only prevents the error from getting * completely out of hand; Aaron Giles reports that error limiting improves * the results even with corner colors allocated. * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty * well, but the smoother transfer function used below is even better. Thanks * to Aaron Giles for this idea. */ LOCAL (void) #ifdef ORIGINAL_LIB_JPEG init_error_limit (j_decompress_ptr cinfo) #else init_error_limit (gdImagePtr im, my_cquantize_ptr cquantize) #endif /* Allocate and fill in the error_limiter table */ { int *table; int in, out; #ifdef ORIGINAL_LIB_JPEG my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; table = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * SIZEOF (int)); #else cquantize->error_limiter_storage = (int *) gdMalloc ((MAXJSAMPLE * 2 + 1) * sizeof (int)); if (!cquantize->error_limiter_storage) { return; } table = cquantize->error_limiter_storage; #endif table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ cquantize->error_limiter = table; #define STEPSIZE ((MAXJSAMPLE+1)/16) /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ out = 0; for (in = 0; in < STEPSIZE; in++, out++){ table[in] = out; table[-in] = -out; } /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) { table[in] = out; table[-in] = -out; } /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ for (; in <= MAXJSAMPLE; in++) { table[in] = out; table[-in] = -out; } #undef STEPSIZE } /* * Finish up at the end of each pass. */ #ifdef ORIGINAL_LIB_JPEG METHODDEF (void) finish_pass1 (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; /* Select the representative colors and fill in cinfo->colormap */ cinfo->colormap = cquantize->sv_colormap; select_colors (cinfo, cquantize->desired); /* Force next pass to zero the color index table */ cquantize->needs_zeroed = TRUE; } METHODDEF (void) finish_pass2 (j_decompress_ptr cinfo) { /* no work */ } /* * Initialize for each processing pass. */ METHODDEF (void) start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; int i; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) { cinfo->dither_mode = JDITHER_FS; } if (is_pre_scan){ /* Set up method pointers */ cquantize->pub.color_quantize = prescan_quantize; cquantize->pub.finish_pass = finish_pass1; cquantize->needs_zeroed = TRUE; /* Always zero histogram */ } else { /* Set up method pointers */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->pub.color_quantize = pass2_fs_dither; } else { cquantize->pub.color_quantize = pass2_no_dither; } cquantize->pub.finish_pass = finish_pass2; /* Make sure color count is acceptable */ i = cinfo->actual_number_of_colors; if (i < 1) { ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); } if (i > MAXNUMCOLORS) { ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); } if (cinfo->dither_mode == JDITHER_FS) { size_t arraysize = (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF (FSERROR))); /* Allocate Floyd-Steinberg workspace if we didn't already. */ if (cquantize->fserrors == NULL) { cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); } /* Initialize the propagated errors to zero. */ jzero_far((void FAR *) cquantize->fserrors, arraysize); /* Make the error-limit table if we didn't already. */ if (cquantize->error_limiter == NULL) { init_error_limit(cinfo); } cquantize->on_odd_row = FALSE; } } /* Zero the histogram or inverse color map, if necessary */ if (cquantize->needs_zeroed) { for (i = 0; i < HIST_C0_ELEMS; i++) { jzero_far((void FAR *) histogram[i], HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF (histcell)); } cquantize->needs_zeroed = FALSE; } } /* * Switch to a new external colormap between output passes. */ METHODDEF (void) new_color_map_2_quant (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; /* Reset the inverse color map */ cquantize->needs_zeroed = TRUE; } #else static void zeroHistogram (hist3d histogram) { int i; /* Zero the histogram or inverse color map */ for (i = 0; i < HIST_C0_ELEMS; i++) { memset (histogram[i], 0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell)); } } #endif /* * Module initialization routine for 2-pass color quantization. */ #ifdef ORIGINAL_LIB_JPEG GLOBAL (void) jinit_2pass_quantizer (j_decompress_ptr cinfo) #else void gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted) #endif { my_cquantize_ptr cquantize = NULL; int i; #ifndef ORIGINAL_LIB_JPEG /* Allocate the JPEG palette-storage */ size_t arraysize; int maxColors = gdMaxColors; if (!im->trueColor) { /* Nothing to do! */ return; } /* If we have a transparent color (the alphaless mode of transparency), we * must reserve a palette entry for it at the end of the palette. */ if (im->transparent >= 0){ maxColors--; } if (colorsWanted > maxColors) { colorsWanted = maxColors; } im->pixels = gdCalloc(sizeof (unsigned char *), im->sy); for (i = 0; (i < im->sy); i++) { im->pixels[i] = gdCalloc(sizeof (unsigned char *), im->sx); } #endif #ifdef ORIGINAL_LIB_JPEG cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF (my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_2_quant; cquantize->pub.new_color_map = new_color_map_2_quant; /* Make sure jdmaster didn't give me a case I can't handle */ if (cinfo->out_color_components != 3) { ERREXIT (cinfo, JERR_NOTIMPL); } #else cquantize = (my_cquantize_ptr) gdCalloc(sizeof (my_cquantizer), 1); #endif cquantize->fserrors = NULL; /* flag optional arrays not allocated */ cquantize->error_limiter = NULL; /* Allocate the histogram/inverse colormap storage */ #ifdef ORIGINAL_LIB_JPEG cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF (hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF (histcell)); } cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ #else cquantize->histogram = (hist3d) gdMalloc (HIST_C0_ELEMS * sizeof (hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d) gdMalloc(HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell)); } #endif #ifdef ORIGINAL_LIB_JPEG /* Allocate storage for the completed colormap, if required. * We do this now since it is FAR storage and may affect * the memory manager's space calculations. */ if (cinfo->enable_2pass_quant) { /* Make sure color count is acceptable */ int desired = cinfo->desired_number_of_colors; /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ if (desired < 8) { ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); } /* Make sure colormap indexes can be represented by JSAMPLEs */ if (desired > MAXNUMCOLORS) { ERREXIT1 (cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); } cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); cquantize->desired = desired; } else { cquantize->sv_colormap = NULL; } /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) { cinfo->dither_mode = JDITHER_FS; } /* Allocate Floyd-Steinberg workspace if necessary. * This isn't really needed until pass 2, but again it is FAR storage. * Although we will cope with a later change in dither_mode, * we do not promise to honor max_memory_to_use if dither_mode changes. */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF (FSERROR)))); /* Might as well create the error-limiting table too. */ init_error_limit(cinfo); } #else cquantize->fserrors = (FSERRPTR) gdMalloc(3 * sizeof (FSERROR)); init_error_limit (im, cquantize); arraysize = (size_t) ((im->sx + 2) * (3 * sizeof (FSERROR))); gdFree(cquantize->fserrors); /* Allocate Floyd-Steinberg workspace. */ cquantize->fserrors = gdCalloc(arraysize, 1); cquantize->on_odd_row = FALSE; /* Do the work! */ zeroHistogram(cquantize->histogram); prescan_quantize(im, cquantize); /* TBB 2.0.5: pass colorsWanted, not 256! */ select_colors(im, cquantize, colorsWanted); zeroHistogram(cquantize->histogram); if (dither) { pass2_fs_dither(im, cquantize); } else { pass2_no_dither(im, cquantize); } #if 0 /* 2.0.12; we no longer attempt full alpha in palettes */ if (cquantize->transparentIsPresent) { int mt = -1; int mtIndex = -1; for (i = 0; (i < im->colorsTotal); i++) { if (im->alpha[i] > mt) { mtIndex = i; mt = im->alpha[i]; } } for (i = 0; (i < im->colorsTotal); i++) { if (im->alpha[i] == mt) { im->alpha[i] = gdAlphaTransparent; } } } if (cquantize->opaqueIsPresent) { int mo = 128; int moIndex = -1; for (i = 0; (i < im->colorsTotal); i++) { if (im->alpha[i] < mo) { moIndex = i; mo = im->alpha[i]; } } for (i = 0; (i < im->colorsTotal); i++) { if (im->alpha[i] == mo) { im->alpha[i] = gdAlphaOpaque; } } } #endif /* If we had a 'transparent' color, increment the color count so it's * officially in the palette and convert the transparent variable to point to * an index rather than a color (Its data already exists and transparent * pixels have already been mapped to it by this point, it is done late as to * avoid color matching / dithering with it). */ if (im->transparent >= 0) { im->transparent = im->colorsTotal; im->colorsTotal++; } /* Success! Get rid of the truecolor image data. */ im->trueColor = 0; /* Junk the truecolor pixels */ for (i = 0; i < im->sy; i++) { gdFree(im->tpixels[i]); } gdFree(im->tpixels); im->tpixels = 0; /* Tediously free stuff. */ if (im->trueColor) { /* On failure only */ for (i = 0; i < im->sy; i++) { if (im->pixels[i]) { gdFree (im->pixels[i]); } } if (im->pixels) { gdFree (im->pixels); } im->pixels = 0; } for (i = 0; i < HIST_C0_ELEMS; i++) { if (cquantize->histogram[i]) { gdFree(cquantize->histogram[i]); } } if (cquantize->histogram) { gdFree(cquantize->histogram); } if (cquantize->fserrors) { gdFree(cquantize->fserrors); } if (cquantize->error_limiter_storage) { gdFree(cquantize->error_limiter_storage); } if (cquantize) { gdFree(cquantize); } #endif } /* bring the palette colors in im2 to be closer to im1 * */ int gdImageColorMatch (gdImagePtr im1, gdImagePtr im2) { unsigned long *buf; /* stores our calculations */ unsigned long *bp; /* buf ptr */ int color, rgb; int x,y; int count; if( !im1->trueColor ) { return -1; /* im1 must be True Color */ } if( im2->trueColor ) { return -2; /* im2 must be indexed */ } if( (im1->sx != im2->sx) || (im1->sy != im2->sy) ) { return -3; /* the images are meant to be the same dimensions */ } buf = (unsigned long *)gdMalloc( sizeof(unsigned long) * 5 * im2->colorsTotal ); memset( buf, 0, sizeof(unsigned long) * 5 * im2->colorsTotal ); for (x=0; xsx; x++) { for( y=0; ysy; y++ ) { color = im2->pixels[y][x]; rgb = im1->tpixels[y][x]; bp = buf + (color * 5); (*(bp++))++; *(bp++) += gdTrueColorGetRed(rgb); *(bp++) += gdTrueColorGetGreen(rgb); *(bp++) += gdTrueColorGetBlue(rgb); *(bp++) += gdTrueColorGetAlpha(rgb); } } bp = buf; for (color=0; colorcolorsTotal; color++) { count = *(bp++); if( count > 0 ) { im2->red[color] = *(bp++) / count; im2->green[color] = *(bp++) / count; im2->blue[color] = *(bp++) / count; im2->alpha[color] = *(bp++) / count; } else { bp += 4; } } gdFree(buf); return 0; } #endif