/* +----------------------------------------------------------------------+ | PHP Version 5 | +----------------------------------------------------------------------+ | Copyright (c) 1997-2012 The PHP Group | +----------------------------------------------------------------------+ | This source file is subject to version 3.01 of the PHP license, | | that is bundled with this package in the file LICENSE, and is | | available through the world-wide-web at the following url: | | http://www.php.net/license/3_01.txt | | If you did not receive a copy of the PHP license and are unable to | | obtain it through the world-wide-web, please send a note to | | license@php.net so we can mail you a copy immediately. | +----------------------------------------------------------------------+ | Authors: Gustavo Lopes | +----------------------------------------------------------------------+ */ #include #include "php_sockets.h" #include "sockaddr_conv.h" #include "sendrecvmsg.h" #include #include #include #include #include #include #include #include #include #ifdef ZTS #include #endif #define MAX_USER_BUFF_SIZE ((size_t)(100*1024*1024)) #define DEFAULT_BUFF_SIZE 8192 #define MAX_ARRAY_KEY_SIZE 128 #define LONG_CHECK_VALID_INT(l) \ do { \ if ((l) < INT_MIN && (l) > INT_MAX) { \ php_error_docref0(NULL TSRMLS_CC, E_WARNING, "The value %ld does not fit inside " \ "the boundaries of a native integer", (l)); \ return; \ } \ } while (0) struct err_s { int has_error; char *msg; int level; int should_free; }; typedef struct { HashTable params; /* stores pointers; has to be first */ struct err_s err; zend_llist keys, /* common part to res_context ends here */ allocations; php_socket *sock; } ser_context; typedef struct { HashTable params; /* stores pointers; has to be first */ struct err_s err; zend_llist keys; } res_context; struct key_value { const char *key; unsigned key_size; void *value; }; #define KEY_FILL_SOCKADDR "fill_sockaddr" #define KEY_RECVMSG_RET "recvmsg_ret" typedef void (from_zval_write_field)(const zval *arr_value, char *field, ser_context *ctx); typedef void (to_zval_read_field)(const char *data, zval *zv, res_context *ctx); typedef struct { /* zval info */ const char *name; unsigned name_size; int required; /* structure info */ size_t field_offset; /* 0 to pass full structure, e.g. when more than one field is to be changed; in that case the callbacks need to know the name of the fields */ /* callbacks */ from_zval_write_field *from_zval; to_zval_read_field *to_zval; } field_descriptor; typedef struct { int cmsg_level; /* originating protocol */ int cmsg_type; /* protocol-specific type */ } anc_reg_key; static struct { int initialized; HashTable ht; } ancillary_registry; typedef socklen_t (*ancillary_size)(void); typedef struct { socklen_t size; /* size of native structure */ from_zval_write_field *from_array; to_zval_read_field *to_array; } ancillary_reg_entry; /* PARAMETERS */ static int param_get_bool(void *ctx, const char *key, int def) { int **elem; if (zend_hash_find(ctx, key, strlen(key) + 1, (void**)&elem) == SUCCESS) { return **elem; } else { return def; } } /* FORWARD DECLARATIONS */ static ancillary_reg_entry *get_ancillary_reg_entry(int cmsg_level, int msg_type); static inline void *accounted_emalloc(size_t alloc_size, ser_context *ctx) { void *ret = emalloc(alloc_size); zend_llist_add_element(&ctx->allocations, &ret); return ret; } static inline void *accounted_ecalloc(size_t nmemb, size_t alloc_size, ser_context *ctx) { void *ret = ecalloc(nmemb, alloc_size); zend_llist_add_element(&ctx->allocations, &ret); return ret; } static inline void *accounted_safe_ecalloc(size_t nmemb, size_t alloc_size, size_t offset, ser_context *ctx) { void *ret = safe_emalloc(nmemb, alloc_size, offset); memset(ret, '\0', nmemb * alloc_size + offset); zend_llist_add_element(&ctx->allocations, &ret); return ret; } static void do_from_to_zval_err(struct err_s *err, zend_llist *keys, const char *what_conv, const char *fmt, va_list ap) { smart_str path = {0}; const char **node; char *user_msg; int user_msg_size; zend_llist_position pos; if (err->has_error) { return; } for (node = zend_llist_get_first_ex(keys, &pos); node != NULL; node = zend_llist_get_next_ex(keys, &pos)) { smart_str_appends(&path, *node); smart_str_appends(&path, " > "); } if (path.len > 3) { path.len -= 3; } smart_str_0(&path); user_msg_size = vspprintf(&user_msg, 0, fmt, ap); err->has_error = 1; err->level = E_WARNING; spprintf(&err->msg, 0, "error converting %s data (path: %s): %.*s", what_conv, path.c && path.c != '\0' ? path.c : "unavailable", user_msg_size, user_msg); err->should_free = 1; efree(user_msg); smart_str_free_ex(&path, 0); } __attribute__ ((format (printf, 2, 3))) static void do_from_zval_err(ser_context *ctx, const char *fmt, ...) { va_list ap; va_start(ap, fmt); do_from_to_zval_err(&ctx->err, &ctx->keys, "user", fmt, ap); va_end(ap); } __attribute__ ((format (printf, 2, 3))) static void do_to_zval_err(res_context *ctx, const char *fmt, ...) { va_list ap; va_start(ap, fmt); do_from_to_zval_err(&ctx->err, &ctx->keys, "native", fmt, ap); va_end(ap); } static void err_msg_dispose(struct err_s *err TSRMLS_DC) { if (err->msg != NULL) { php_error_docref0(NULL TSRMLS_CC, err->level, "%s", err->msg); if (err->should_free) { efree(err->msg); } } } /* Generic Aggregated conversions */ static void from_zval_write_aggregation(const zval *container, char *structure, const field_descriptor *descriptors, ser_context *ctx) { const field_descriptor *descr; zval **elem; if (Z_TYPE_P(container) != IS_ARRAY) { do_from_zval_err(ctx, "%s", "expected an array here"); } for (descr = descriptors; descr->name != NULL && !ctx->err.has_error; descr++) { if (zend_hash_find(Z_ARRVAL_P(container), descr->name, descr->name_size, (void**)&elem) == SUCCESS) { if (descr->from_zval == NULL) { do_from_zval_err(ctx, "No information on how to convert value " "of key '%s'", descr->name); break; } zend_llist_add_element(&ctx->keys, (void*)&descr->name); descr->from_zval(*elem, ((char*)structure) + descr->field_offset, ctx); zend_llist_remove_tail(&ctx->keys); } else if (descr->required) { do_from_zval_err(ctx, "The key '%s' is required", descr->name); break; } } } static void to_zval_read_aggregation(const char *structure, zval *zarr, /* initialized array */ const field_descriptor *descriptors, res_context *ctx) { const field_descriptor *descr; assert(Z_TYPE_P(zarr) == IS_ARRAY); assert(Z_ARRVAL_P(zarr) != NULL); for (descr = descriptors; descr->name != NULL && !ctx->err.has_error; descr++) { zval *new_zv; if (descr->to_zval == NULL) { do_to_zval_err(ctx, "No information on how to convert native " "field into value for key '%s'", descr->name); break; } ALLOC_INIT_ZVAL(new_zv); add_assoc_zval_ex(zarr, descr->name, descr->name_size, new_zv); zend_llist_add_element(&ctx->keys, (void*)&descr->name); descr->to_zval(structure + descr->field_offset, new_zv, ctx); zend_llist_remove_tail(&ctx->keys); } } /* CONVERSIONS for integers */ static long from_zval_integer_common(const zval *arr_value, ser_context *ctx) { long ret = 0; zval lzval = zval_used_for_init; if (Z_TYPE_P(arr_value) != IS_LONG) { ZVAL_COPY_VALUE(&lzval, arr_value); zval_copy_ctor(&lzval); arr_value = &lzval; } switch (Z_TYPE_P(arr_value)) { case IS_LONG: long_case: ret = Z_LVAL_P(arr_value); break; /* if not long we're operating on lzval */ case IS_DOUBLE: double_case: convert_to_long(&lzval); goto long_case; case IS_OBJECT: case IS_STRING: { long lval; double dval; convert_to_string(&lzval); switch (is_numeric_string(Z_STRVAL(lzval), Z_STRLEN(lzval), &lval, &dval, 0)) { case IS_DOUBLE: zval_dtor(&lzval); Z_TYPE(lzval) = IS_DOUBLE; Z_DVAL(lzval) = dval; goto double_case; case IS_LONG: zval_dtor(&lzval); Z_TYPE(lzval) = IS_LONG; Z_DVAL(lzval) = lval; goto long_case; } /* if we get here, we don't have a numeric string */ do_from_zval_err(ctx, "expected an integer, but got a non numeric " "string (possibly from a converted object): '%s'", Z_STRVAL_P(arr_value)); break; } default: do_from_zval_err(ctx, "%s", "expected an integer, either of a PHP " "integer type or of a convertible type"); break; } zval_dtor(&lzval); return ret; } static void from_zval_write_int(const zval *arr_value, char *field, ser_context *ctx) { long lval; int ival; lval = from_zval_integer_common(arr_value, ctx); if (ctx->err.has_error) { return; } if (lval > INT_MAX || lval < INT_MIN) { do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds " "for a native int"); return; } ival = (int)lval; memcpy(field, &ival, sizeof(ival)); } static void from_zval_write_unsigned(const zval *arr_value, char *field, ser_context *ctx) { long lval; unsigned ival; lval = from_zval_integer_common(arr_value, ctx); if (ctx->err.has_error) { return; } if (sizeof(long) > sizeof(ival) && (lval < 0 || lval > UINT_MAX)) { do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds " "for a native unsigned int"); return; } ival = (unsigned)lval; memcpy(field, &ival, sizeof(ival)); } static void from_zval_write_uint32(const zval *arr_value, char *field, ser_context *ctx) { long lval; uint32_t ival; lval = from_zval_integer_common(arr_value, ctx); if (ctx->err.has_error) { return; } if (sizeof(long) > sizeof(uint32_t) && (lval < 0 || lval > 0xFFFFFFFF)) { do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds " "for an unsigned 32-bit integer"); return; } ival = (uint32_t)lval; memcpy(field, &ival, sizeof(ival)); } static void from_zval_write_net_uint16(const zval *arr_value, char *field, ser_context *ctx) { long lval; uint16_t ival; lval = from_zval_integer_common(arr_value, ctx); if (ctx->err.has_error) { return; } if (lval < 0 || lval > 0xFFFF) { do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds " "for an unsigned 16-bit integer"); return; } ival = htons((uint16_t)lval); memcpy(field, &ival, sizeof(ival)); } static void from_zval_write_sa_family(const zval *arr_value, char *field, ser_context *ctx) { long lval; sa_family_t ival; lval = from_zval_integer_common(arr_value, ctx); if (ctx->err.has_error) { return; } if (lval < 0 || lval > (sa_family_t)-1) { /* sa_family_t is unsigned */ do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds " "for a sa_family_t value"); return; } ival = (sa_family_t)lval; memcpy(field, &ival, sizeof(ival)); } static void to_zval_read_int(const char *data, zval *zv, res_context *ctx) { int ival; memcpy(&ival, data, sizeof(ival)); ZVAL_LONG(zv, (long)ival); } static void to_zval_read_unsigned(const char *data, zval *zv, res_context *ctx) { unsigned ival; memcpy(&ival, data, sizeof(ival)); ZVAL_LONG(zv, (long)ival); } static void to_zval_read_net_uint16(const char *data, zval *zv, res_context *ctx) { uint16_t ival; memcpy(&ival, data, sizeof(ival)); ZVAL_LONG(zv, (long)ntohs(ival)); } static void to_zval_read_uint32(const char *data, zval *zv, res_context *ctx) { uint32_t ival; memcpy(&ival, data, sizeof(ival)); ZVAL_LONG(zv, (long)ival); } static void to_zval_read_sa_family(const char *data, zval *zv, res_context *ctx) { sa_family_t ival; memcpy(&ival, data, sizeof(ival)); ZVAL_LONG(zv, (long)ival); } /* CONVERSIONS for sockaddr */ static void from_zval_write_sin_addr(const zval *zaddr_str, char *inaddr, ser_context *ctx) { int res; struct sockaddr_in saddr = {0}; zval lzval = zval_used_for_init; TSRMLS_FETCH(); if (Z_TYPE_P(zaddr_str) != IS_STRING) { ZVAL_COPY_VALUE(&lzval, zaddr_str); zval_copy_ctor(&lzval); convert_to_string(&lzval); zaddr_str = &lzval; } res = php_set_inet_addr(&saddr, Z_STRVAL_P(zaddr_str), ctx->sock TSRMLS_CC); if (res) { memcpy(inaddr, &saddr.sin_addr, sizeof saddr.sin_addr); } else { /* error already emitted, but let's emit another more relevant */ do_from_zval_err(ctx, "could not resolve address '%s' to get an AF_INET " "address", Z_STRVAL_P(zaddr_str)); } zval_dtor(&lzval); } static void to_zval_read_sin_addr(const char *data, zval *zv, res_context *ctx) { const struct in_addr *addr = (const struct in_addr *)data; socklen_t size = INET_ADDRSTRLEN; Z_TYPE_P(zv) = IS_STRING; Z_STRVAL_P(zv) = ecalloc(1, size); Z_STRLEN_P(zv) = 0; if (inet_ntop(AF_INET, addr, Z_STRVAL_P(zv), size) == NULL) { do_to_zval_err(ctx, "could not convert IPv4 address to string " "(errno %d)", errno); return; } Z_STRLEN_P(zv) = strlen(Z_STRVAL_P(zv)); } static const field_descriptor descriptors_sockaddr_in[] = { {"family", sizeof("family"), 0, offsetof(struct sockaddr_in, sin_family), from_zval_write_sa_family, to_zval_read_sa_family}, {"addr", sizeof("addr"), 0, offsetof(struct sockaddr_in, sin_addr), from_zval_write_sin_addr, to_zval_read_sin_addr}, {"port", sizeof("port"), 0, offsetof(struct sockaddr_in, sin_port), from_zval_write_net_uint16, to_zval_read_net_uint16}, {0} }; static void from_zval_write_sockaddr_in(const zval *container, char *sockaddr, ser_context *ctx) { from_zval_write_aggregation(container, sockaddr, descriptors_sockaddr_in, ctx); } static void to_zval_read_sockaddr_in(const char *data, zval *zv, res_context *ctx) { to_zval_read_aggregation(data, zv, descriptors_sockaddr_in, ctx); } static void from_zval_write_sin6_addr(const zval *zaddr_str, char *addr6, ser_context *ctx) { int res; struct sockaddr_in6 saddr6 = {0}; zval lzval = zval_used_for_init; TSRMLS_FETCH(); if (Z_TYPE_P(zaddr_str) != IS_STRING) { ZVAL_COPY_VALUE(&lzval, zaddr_str); zval_copy_ctor(&lzval); convert_to_string(&lzval); zaddr_str = &lzval; } res = php_set_inet6_addr(&saddr6, Z_STRVAL_P(zaddr_str), ctx->sock TSRMLS_CC); if (res) { memcpy(addr6, &saddr6.sin6_addr, sizeof saddr6.sin6_addr); } else { /* error already emitted, but let's emit another more relevant */ do_from_zval_err(ctx, "could not resolve address '%s' to get an AF_INET6 " "address", Z_STRVAL_P(zaddr_str)); } zval_dtor(&lzval); } static void to_zval_read_sin6_addr(const char *data, zval *zv, res_context *ctx) { const struct in6_addr *addr = (const struct in6_addr *)data; socklen_t size = INET6_ADDRSTRLEN; Z_TYPE_P(zv) = IS_STRING; Z_STRVAL_P(zv) = ecalloc(1, size); Z_STRLEN_P(zv) = 0; if (inet_ntop(AF_INET6, addr, Z_STRVAL_P(zv), size) == NULL) { do_to_zval_err(ctx, "could not convert IPv6 address to string " "(errno %d)", errno); return; } Z_STRLEN_P(zv) = strlen(Z_STRVAL_P(zv)); } static const field_descriptor descriptors_sockaddr_in6[] = { {"family", sizeof("family"), 0, offsetof(struct sockaddr_in6, sin6_family), from_zval_write_sa_family, to_zval_read_sa_family}, {"addr", sizeof("addr"), 0, offsetof(struct sockaddr_in6, sin6_addr), from_zval_write_sin6_addr, to_zval_read_sin6_addr}, {"port", sizeof("port"), 0, offsetof(struct sockaddr_in6, sin6_port), from_zval_write_net_uint16, to_zval_read_net_uint16}, {"flowinfo", sizeof("flowinfo"), 0, offsetof(struct sockaddr_in6, sin6_flowinfo), from_zval_write_uint32, to_zval_read_uint32}, {"scope_id", sizeof("scope_id"), 0, offsetof(struct sockaddr_in6, sin6_scope_id), from_zval_write_uint32, to_zval_read_uint32}, {0} }; static void from_zval_write_sockaddr_in6(const zval *container, char *sockaddr6, ser_context *ctx) { from_zval_write_aggregation(container, sockaddr6, descriptors_sockaddr_in6, ctx); } static void to_zval_read_sockaddr_in6(const char *data, zval *zv, res_context *ctx) { to_zval_read_aggregation(data, zv, descriptors_sockaddr_in6, ctx); } static void from_zval_write_sockaddr_aux(const zval *container, struct sockaddr **sockaddr_ptr, socklen_t *sockaddr_len, ser_context *ctx) { int family; zval **elem; int fill_sockaddr; if (Z_TYPE_P(container) != IS_ARRAY) { do_from_zval_err(ctx, "%s", "expected an array here"); return; } fill_sockaddr = param_get_bool(ctx, KEY_FILL_SOCKADDR, 1); if (zend_hash_find(Z_ARRVAL_P(container), "family", sizeof("family"), (void**)&elem) == SUCCESS && Z_TYPE_PP(elem) != IS_NULL) { const char *node = "family"; zend_llist_add_element(&ctx->keys, &node); from_zval_write_int(*elem, (char*)&family, ctx); zend_llist_remove_tail(&ctx->keys); } else { family = ctx->sock->type; } switch (family) { case AF_INET: /* though not all OSes support sockaddr_in used in IPv6 sockets */ if (ctx->sock->type != AF_INET && ctx->sock->type != AF_INET6) { do_from_zval_err(ctx, "the specified family (number %d) is not " "supported on this socket", family); return; } *sockaddr_ptr = accounted_ecalloc(1, sizeof(struct sockaddr_in), ctx); *sockaddr_len = sizeof(struct sockaddr_in); if (fill_sockaddr) { from_zval_write_sockaddr_in(container, (char*)*sockaddr_ptr, ctx); (*sockaddr_ptr)->sa_family = AF_INET; } break; case AF_INET6: if (ctx->sock->type != AF_INET6) { do_from_zval_err(ctx, "the specified family (AF_INET6) is not " "supported on this socket"); return; } *sockaddr_ptr = accounted_ecalloc(1, sizeof(struct sockaddr_in6), ctx); *sockaddr_len = sizeof(struct sockaddr_in6); if (fill_sockaddr) { from_zval_write_sockaddr_in6(container, (char*)*sockaddr_ptr, ctx); (*sockaddr_ptr)->sa_family = AF_INET6; } break; default: do_from_zval_err(ctx, "%s", "the only families currently supported are " "AF_INET and AF_INET6"); break; } } static void to_zval_read_sockaddr_aux(const char *sockaddr_c, zval *zv, res_context *ctx) { const struct sockaddr *saddr = (struct sockaddr *)sockaddr_c; assert(Z_TYPE_P(zv) == IS_ARRAY); switch (saddr->sa_family) { case AF_INET: to_zval_read_sockaddr_in(sockaddr_c, zv, ctx); break; case AF_INET6: to_zval_read_sockaddr_in6(sockaddr_c, zv, ctx); break; default: do_to_zval_err(ctx, "cannot read struct sockaddr with family %d; " "not supported", (int)saddr->sa_family); break; } } /* CONVERSIONS for cmsghdr */ /* * [ level => , type => , data => [],] * struct cmsghdr { * socklen_t cmsg_len; // data byte count, including header * int cmsg_level; // originating protocol * int cmsg_type; // protocol-specific type * // followed by unsigned char cmsg_data[]; * }; */ static void from_zval_write_control(const zval *arr, void **control_buf, zend_llist_element *alloc, size_t *control_len, size_t *offset, ser_context *ctx) { struct cmsghdr *cmsghdr; int level, type; size_t req_space, space_left; ancillary_reg_entry *entry; static const field_descriptor descriptor_level[] = { {"level", sizeof("level"), 0, 0, from_zval_write_int, 0}, {0} }; static const field_descriptor descriptor_type[] = { {"type", sizeof("type"), 0, 0, from_zval_write_int, 0}, {0} }; field_descriptor descriptor_data[] = { {"data", sizeof("data"), 0, 0, 0, 0}, {0} }; from_zval_write_aggregation(arr, (char *)&level, descriptor_level, ctx); if (ctx->err.has_error) { return; } from_zval_write_aggregation(arr, (char *)&type, descriptor_type, ctx); if (ctx->err.has_error) { return; } entry = get_ancillary_reg_entry(level, type); if (entry == NULL) { do_from_zval_err(ctx, "cmsghdr with level %d and type %d not supported", level, type); return; } req_space = CMSG_SPACE(entry->size); space_left = *control_len - *offset; assert(*control_len >= *offset); if (space_left < req_space) { *control_buf = safe_erealloc(*control_buf, 2, req_space, *control_len); *control_len += 2 * req_space; memcpy(&alloc->data, *control_buf, sizeof *control_buf); } cmsghdr = (struct cmsghdr*)(((char*)*control_buf) + *offset); cmsghdr->cmsg_level = level; cmsghdr->cmsg_type = type; cmsghdr->cmsg_len = CMSG_LEN(entry->size); descriptor_data[0].from_zval = entry->from_array; from_zval_write_aggregation(arr, (char*)CMSG_DATA(cmsghdr), descriptor_data, ctx); *offset += req_space; } static void from_zval_write_control_array(const zval *arr, char *msghdr_c, ser_context *ctx) { HashPosition pos; char buf[sizeof("element #4294967295")]; char *bufp = buf; zval **elem; uint32_t i; int num_elems; void *control_buf; zend_llist_element *alloc; size_t control_len, cur_offset; struct msghdr *msg = (struct msghdr*)msghdr_c; if (Z_TYPE_P(arr) != IS_ARRAY) { do_from_zval_err(ctx, "%s", "expected an array here"); return; } num_elems = zend_hash_num_elements(Z_ARRVAL_P(arr)); if (num_elems == 0) { return; } /* estimate each message at 20 bytes */ control_buf = accounted_safe_ecalloc(num_elems, CMSG_SPACE(20), 0, ctx); alloc = ctx->allocations.tail; control_len = (size_t)num_elems * CMSG_SPACE(20); cur_offset = 0; for (zend_hash_internal_pointer_reset_ex(Z_ARRVAL_P(arr), &pos), i = 0; !ctx->err.has_error && zend_hash_get_current_data_ex(Z_ARRVAL_P(arr), (void **)&elem, &pos) == SUCCESS; zend_hash_move_forward_ex(Z_ARRVAL_P(arr), &pos)) { if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) { memcpy(buf, "element", sizeof("element")); } zend_llist_add_element(&ctx->keys, &bufp); from_zval_write_control(*elem, &control_buf, alloc, &control_len, &cur_offset, ctx); zend_llist_remove_tail(&ctx->keys); } msg->msg_control = control_buf; msg->msg_controllen = cur_offset; /* not control_len, which may be larger */ } static void to_zval_read_cmsg_data(const char *cmsghdr_c, zval *zv, res_context *ctx) { const struct cmsghdr *cmsg = (const struct cmsghdr *)cmsghdr_c; ancillary_reg_entry *entry; entry = get_ancillary_reg_entry(cmsg->cmsg_level, cmsg->cmsg_type); if (entry == NULL) { do_to_zval_err(ctx, "cmsghdr with level %d and type %d not supported", cmsg->cmsg_level, cmsg->cmsg_type); return; } if (CMSG_LEN(entry->size) > cmsg->cmsg_len) { do_to_zval_err(ctx, "the cmsghdr structure is unexpectedly small; " "expected a length of at least %ld, but got %ld", (long)CMSG_LEN(entry->size), (long)cmsg->cmsg_len); return; } entry->to_array((const char *)CMSG_DATA(cmsg), zv, ctx); } static void to_zval_read_control(const char *cmsghdr_c, zval *zv, res_context *ctx) { /* takes a cmsghdr, not a msghdr like from_zval_write_control */ static const field_descriptor descriptors[] = { {"level", sizeof("level"), 0, offsetof(struct cmsghdr, cmsg_level), 0, to_zval_read_int}, {"type", sizeof("type"), 0, offsetof(struct cmsghdr, cmsg_type), 0, to_zval_read_int}, {"data", sizeof("data"), 0, 0 /* cmsghdr passed */, 0, to_zval_read_cmsg_data}, {0} }; array_init_size(zv, 3); to_zval_read_aggregation(cmsghdr_c, zv, descriptors, ctx); } static void to_zval_read_control_array(const char *msghdr_c, zval *zv, res_context *ctx) { struct msghdr *msg = (struct msghdr *)msghdr_c; struct cmsghdr *cmsg; char buf[sizeof("element #4294967295")]; char *bufp = buf; uint32_t i = 1; /*if (msg->msg_flags & MSG_CTRUNC) { php_error_docref0(NULL, E_WARNING, "The MSG_CTRUNC flag is present; will not " "attempt to read control messages"); ZVAL_FALSE(zv); return; }*/ array_init(zv); for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL && !ctx->err.has_error; cmsg = CMSG_NXTHDR(msg,cmsg)) { zval *elem; ALLOC_INIT_ZVAL(elem); add_next_index_zval(zv, elem); if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) { memcpy(buf, "element", sizeof("element")); } zend_llist_add_element(&ctx->keys, &bufp); to_zval_read_control((const char *)cmsg, elem, ctx); zend_llist_remove_tail(&ctx->keys); } } /* CONVERSIONS for msghdr */ static void from_zval_write_name(const zval *zname_arr, char *msghdr_c, ser_context *ctx) { struct sockaddr *sockaddr; socklen_t sockaddr_len; struct msghdr *msghdr = (struct msghdr *)msghdr_c; from_zval_write_sockaddr_aux(zname_arr, &sockaddr, &sockaddr_len, ctx); msghdr->msg_name = sockaddr; msghdr->msg_namelen = sockaddr_len; } static void to_zval_read_name(const char *sockaddr_p, zval *zv, res_context *ctx) { void *name = (void*)*(void**)sockaddr_p; if (name == NULL) { ZVAL_NULL(zv); } else { array_init(zv); to_zval_read_sockaddr_aux(name, zv, ctx); } } static void from_zval_write_msghdr_buffer_size(const zval *elem, char *msghdr_c, ser_context *ctx) { long lval; struct msghdr *msghdr = (struct msghdr *)msghdr_c; lval = from_zval_integer_common(elem, ctx); if (ctx->err.has_error) { return; } if (lval < 0 || lval > MAX_USER_BUFF_SIZE) { do_from_zval_err(ctx, "the buffer size must be between 1 and %ld; " "given %ld", (long)MAX_USER_BUFF_SIZE, lval); return; } msghdr->msg_iovlen = 1; msghdr->msg_iov = accounted_emalloc(sizeof(*msghdr->msg_iov) * 1, ctx); msghdr->msg_iov[0].iov_base = accounted_emalloc((size_t)lval, ctx); msghdr->msg_iov[0].iov_len = (size_t)lval; } static void from_zval_write_iov_array(const zval *arr, char *msghdr_c, ser_context *ctx) { HashPosition pos; int num_elem; zval **elem; unsigned i; struct msghdr *msg = (struct msghdr*)msghdr_c; char buf[sizeof("element #4294967295")]; char *bufp = buf; if (Z_TYPE_P(arr) != IS_ARRAY) { do_from_zval_err(ctx, "%s", "expected an array here"); return; } num_elem = zend_hash_num_elements(Z_ARRVAL_P(arr)); if (num_elem == 0) { return; } msg->msg_iov = accounted_safe_ecalloc(num_elem, sizeof *msg->msg_iov, 0, ctx); msg->msg_iovlen = (size_t)num_elem; for (zend_hash_internal_pointer_reset_ex(Z_ARRVAL_P(arr), &pos), i = 0; !ctx->err.has_error && zend_hash_get_current_data_ex(Z_ARRVAL_P(arr), (void **)&elem, &pos) == SUCCESS; zend_hash_move_forward_ex(Z_ARRVAL_P(arr), &pos)) { size_t len; if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) { memcpy(buf, "element", sizeof("element")); } zend_llist_add_element(&ctx->keys, &bufp); zval_add_ref(elem); convert_to_string_ex(elem); len = Z_STRLEN_PP(elem); msg->msg_iov[i - 1].iov_base = accounted_emalloc(len, ctx); msg->msg_iov[i - 1].iov_len = len; memcpy(msg->msg_iov[i - 1].iov_base, Z_STRVAL_PP(elem), len); zval_ptr_dtor(elem); zend_llist_remove_tail(&ctx->keys); } } static void from_zval_write_controllen(const zval *elem, char *msghdr_c, ser_context *ctx) { struct msghdr *msghdr = (struct msghdr *)msghdr_c; uint32_t len; /* controllen should be an unsigned with at least 32-bit. Let's assume * this least common denominator */ from_zval_write_uint32(elem, (char*)&len, ctx); if (!ctx->err.has_error && len == 0) { do_from_zval_err(ctx, "controllen cannot be 0"); return; } msghdr->msg_control = accounted_emalloc(len, ctx); msghdr->msg_controllen = len; } static void from_zval_write_msghdr_send(const zval *container, char *msghdr_c, ser_context *ctx) { static const field_descriptor descriptors[] = { {"name", sizeof("name"), 0, 0, from_zval_write_name, 0}, {"iov", sizeof("iov"), 0, 0, from_zval_write_iov_array, 0}, {"control", sizeof("control"), 0, 0, from_zval_write_control_array, 0}, {0} }; from_zval_write_aggregation(container, msghdr_c, descriptors, ctx); } static void from_zval_write_msghdr_recv(const zval *container, char *msghdr_c, ser_context *ctx) { /* zval to struct msghdr, version for recvmsg(). It differs from the version * for sendmsg() in that it: * - has a buffer_size instead of an iov array; * - has no control element; has a controllen element instead * struct msghdr { * void *msg_name; * socklen_t msg_namelen; * struct iovec *msg_iov; * size_t msg_iovlen; * void *msg_control; * size_t msg_controllen; //can also be socklen_t * int msg_flags; * }; */ static const field_descriptor descriptors[] = { {"name", sizeof("name"), 0, 0, from_zval_write_name, 0}, {"buffer_size", sizeof("buffer_size"), 0, 0, from_zval_write_msghdr_buffer_size, 0}, {"controllen", sizeof("controllen"), 1, 0, from_zval_write_controllen, 0}, {0} }; struct msghdr *msghdr = (struct msghdr *)msghdr_c; const int falsev = 0, *falsevp = &falsev; if (zend_hash_add(&ctx->params, KEY_FILL_SOCKADDR, sizeof(KEY_FILL_SOCKADDR), (void*)&falsevp, sizeof(falsevp), NULL) == FAILURE) { do_from_zval_err(ctx, "could not add fill_sockaddr; this is a bug"); return; } from_zval_write_aggregation(container, msghdr_c, descriptors, ctx); zend_hash_del(&ctx->params, KEY_FILL_SOCKADDR, sizeof(KEY_FILL_SOCKADDR)); if (ctx->err.has_error) { return; } if (msghdr->msg_iovlen == 0) { msghdr->msg_iovlen = 1; msghdr->msg_iov = accounted_emalloc(sizeof(*msghdr->msg_iov) * 1, ctx); msghdr->msg_iov[0].iov_base = accounted_emalloc((size_t)DEFAULT_BUFF_SIZE, ctx); msghdr->msg_iov[0].iov_len = (size_t)DEFAULT_BUFF_SIZE; } } static void to_zval_read_iov(const char *msghdr_c, zval *zv, res_context *ctx) { const struct msghdr *msghdr = (const struct msghdr *)msghdr_c; size_t iovlen = msghdr->msg_iovlen; ssize_t **recvmsg_ret, bytes_left; uint i; if (iovlen > UINT_MAX) { do_to_zval_err(ctx, "unexpectedly large value for iov_len: %lu", (unsigned long)iovlen); } array_init_size(zv, (uint)iovlen); if (zend_hash_find(&ctx->params, KEY_RECVMSG_RET, sizeof(KEY_RECVMSG_RET), (void**)&recvmsg_ret) == FAILURE) { do_to_zval_err(ctx, "recvmsg_ret not found in params. This is a bug"); return; } bytes_left = **recvmsg_ret; for (i = 0; bytes_left > 0 && i < (uint)iovlen; i++) { zval *elem; size_t len = MIN(msghdr->msg_iov[i].iov_len, bytes_left); char *buf = safe_emalloc(1, len, 1); MAKE_STD_ZVAL(elem); memcpy(buf, msghdr->msg_iov[i].iov_base, len); buf[len] = '\0'; ZVAL_STRINGL(elem, buf, len, 0); add_next_index_zval(zv, elem); bytes_left -= len; } } static void to_zval_read_msghdr(const char *msghdr_c, zval *zv, res_context *ctx) { static const field_descriptor descriptors[] = { {"name", sizeof("name"), 0, offsetof(struct msghdr, msg_name), 0, to_zval_read_name}, {"control", sizeof("control"), 0, 0, 0, to_zval_read_control_array}, {"iov", sizeof("iov"), 0, 0, 0, to_zval_read_iov}, {"flags", sizeof("flags"), 0, offsetof(struct msghdr, msg_flags), 0, to_zval_read_int}, {0} }; array_init_size(zv, 4); to_zval_read_aggregation(msghdr_c, zv, descriptors, ctx); } /* CONVERSIONS for struct in6_pktinfo */ static const field_descriptor descriptors_in6_pktinfo[] = { {"addr", sizeof("addr"), 1, offsetof(struct in6_pktinfo, ipi6_addr), from_zval_write_sin6_addr, to_zval_read_sin6_addr}, {"ifindex", sizeof("ifindex"), 1, offsetof(struct in6_pktinfo, ipi6_ifindex), from_zval_write_unsigned, to_zval_read_unsigned}, {0} }; static void from_zval_write_in6_pktinfo(const zval *container, char *in6_pktinfo_c, ser_context *ctx) { from_zval_write_aggregation(container, in6_pktinfo_c, descriptors_in6_pktinfo, ctx); } static void to_zval_read_in6_pktinfo(const char *data, zval *zv, res_context *ctx) { array_init_size(zv, 2); to_zval_read_aggregation(data, zv, descriptors_in6_pktinfo, ctx); } /* ENTRY POINT for conversions */ static void free_from_zval_allocation(void *alloc_ptr_ptr) { efree(*(void**)alloc_ptr_ptr); } static void *from_zval_run_conversions(const zval *container, php_socket *sock, from_zval_write_field *writer, size_t struct_size, const char *top_name, zend_llist **allocations /* out */, struct err_s *err /* in/out */) { ser_context ctx = {{0}}; char *structure = NULL; *allocations = NULL; if (err->has_error) { return NULL; } zend_hash_init(&ctx.params, 8, NULL, NULL, 0); zend_llist_init(&ctx.keys, sizeof(const char *), NULL, 0); zend_llist_init(&ctx.allocations, sizeof(void *), &free_from_zval_allocation, 0); ctx.sock = sock; structure = ecalloc(1, struct_size); zend_llist_add_element(&ctx.keys, &top_name); zend_llist_add_element(&ctx.allocations, &structure); /* main call */ writer(container, structure, &ctx); if (ctx.err.has_error) { zend_llist_destroy(&ctx.allocations); /* deallocates structure as well */ structure = NULL; *err = ctx.err; } else { *allocations = emalloc(sizeof **allocations); **allocations = ctx.allocations; } zend_llist_destroy(&ctx.keys); zend_hash_destroy(&ctx.params); return structure; } static zval *to_zval_run_conversions(const char *structure, to_zval_read_field *reader, const char *top_name, const struct key_value *key_value_pairs, struct err_s *err) { res_context ctx = {{0}, {0}}; const struct key_value *kv; zval *zv = NULL; if (err->has_error) { return NULL; } ALLOC_INIT_ZVAL(zv); zend_llist_init(&ctx.keys, sizeof(const char *), NULL, 0); zend_llist_add_element(&ctx.keys, &top_name); zend_hash_init(&ctx.params, 8, NULL, NULL, 0); for (kv = key_value_pairs; kv->key != NULL; kv++) { zend_hash_update(&ctx.params, kv->key, kv->key_size, (void*)&kv->value, sizeof(kv->value), NULL); } /* main call */ reader(structure, zv, &ctx); if (ctx.err.has_error) { zval_ptr_dtor(&zv); zv = NULL; *err = ctx.err; } zend_llist_destroy(&ctx.keys); zend_hash_destroy(&ctx.params); return zv; } #ifdef ZTS static MUTEX_T ancillary_mutex; #endif static void init_ancillary_registry(void) { ancillary_reg_entry entry; anc_reg_key key; ancillary_registry.initialized = 1; zend_hash_init(&ancillary_registry.ht, 32, NULL, NULL, 1); #define PUT_ENTRY() \ zend_hash_update(&ancillary_registry.ht, (char*)&key, sizeof(key), \ (void*)&entry, sizeof(entry), NULL) entry.size = sizeof(struct in6_pktinfo); entry.from_array = from_zval_write_in6_pktinfo; entry.to_array = to_zval_read_in6_pktinfo; key.cmsg_level = IPPROTO_IPV6; key.cmsg_type = IPV6_PKTINFO; PUT_ENTRY(); entry.size = sizeof(int); entry.from_array = from_zval_write_int; entry.to_array = to_zval_read_int; key.cmsg_level = IPPROTO_IPV6; key.cmsg_type = IPV6_HOPLIMIT; PUT_ENTRY(); entry.size = sizeof(int); entry.from_array = from_zval_write_int; entry.to_array = to_zval_read_int; key.cmsg_level = IPPROTO_IPV6; key.cmsg_type = IPV6_TCLASS; PUT_ENTRY(); } static ancillary_reg_entry *get_ancillary_reg_entry(int cmsg_level, int msg_type) { anc_reg_key key = { cmsg_level, msg_type }; ancillary_reg_entry *entry; #ifdef ZTS tsrm_mutex_lock(ancillary_mutex); #endif if (!ancillary_registry.initialized) { init_ancillary_registry(); } #ifdef ZTS tsrm_mutex_unlock(ancillary_mutex); #endif if (zend_hash_find(&ancillary_registry.ht, (char*)&key, sizeof(key), (void**)&entry) == SUCCESS) { return entry; } else { return NULL; } } PHP_FUNCTION(socket_sendmsg) { zval *zsocket, *zmsg; long flags = 0; php_socket *php_sock; struct msghdr *msghdr; zend_llist *allocations; struct err_s err = {0}; ssize_t res; /* zmsg should be passed by ref */ if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ra|l", &zsocket, &zmsg, &flags) == FAILURE) { return; } LONG_CHECK_VALID_INT(flags); ZEND_FETCH_RESOURCE(php_sock, php_socket *, &zsocket, -1, php_sockets_le_socket_name, php_sockets_le_socket()); msghdr = from_zval_run_conversions(zmsg, php_sock, from_zval_write_msghdr_send, sizeof(*msghdr), "msghdr", &allocations, &err); if (err.has_error) { err_msg_dispose(&err TSRMLS_CC); RETURN_FALSE; } res = sendmsg(php_sock->bsd_socket, msghdr, (int)flags); if (res != -1) { zend_llist_destroy(allocations); efree(allocations); RETURN_LONG((long)res); } else { SOCKETS_G(last_error) = errno; php_error_docref(NULL TSRMLS_CC, E_WARNING, "error in sendmsg [%d]: %s", errno, sockets_strerror(errno TSRMLS_CC)); RETURN_FALSE; } } PHP_FUNCTION(socket_recvmsg) { zval *zsocket, *zmsg; long flags = 0; php_socket *php_sock; ssize_t res; struct msghdr *msghdr; zend_llist *allocations; struct err_s err = {0}; //ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags); if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ra|l", &zsocket, &zmsg, &flags) == FAILURE) { return; } LONG_CHECK_VALID_INT(flags); ZEND_FETCH_RESOURCE(php_sock, php_socket *, &zsocket, -1, php_sockets_le_socket_name, php_sockets_le_socket()); msghdr = from_zval_run_conversions(zmsg, php_sock, from_zval_write_msghdr_recv, sizeof(*msghdr), "msghdr", &allocations, &err); if (err.has_error) { err_msg_dispose(&err TSRMLS_CC); RETURN_FALSE; } res = recvmsg(php_sock->bsd_socket, msghdr, (int)flags); if (res != -1) { zval *zres; struct key_value kv[] = { {KEY_RECVMSG_RET, sizeof(KEY_RECVMSG_RET), &res}, {0} }; zres = to_zval_run_conversions((char *)msghdr, to_zval_read_msghdr, "msghdr", kv, &err); /* we don;t need msghdr anymore; free it */ msghdr = NULL; zend_llist_destroy(allocations); efree(allocations); zval_dtor(zmsg); if (!err.has_error) { ZVAL_COPY_VALUE(zmsg, zres); efree(zres); /* only shallow destruction */ } else { err_msg_dispose(&err TSRMLS_CC); ZVAL_FALSE(zmsg); /* no need to destroy/free zres -- it's NULL in this circumstance */ assert(zres == NULL); } } else { SOCKETS_G(last_error) = errno; php_error_docref(NULL TSRMLS_CC, E_WARNING, "error in recvmsg [%d]: %s", errno, sockets_strerror(errno TSRMLS_CC)); RETURN_FALSE; } RETURN_LONG((long)res); } PHP_FUNCTION(socket_cmsg_space) { long level, type; ancillary_reg_entry *entry; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ll", &level, &type) == FAILURE) { return; } LONG_CHECK_VALID_INT(level); LONG_CHECK_VALID_INT(type); entry = get_ancillary_reg_entry(level, type); if (entry == NULL) { php_error_docref0(NULL TSRMLS_CC, E_WARNING, "The pair level %ld/type %ld is " "not supported by PHP", level, type); return; } RETURN_LONG((long)CMSG_SPACE(entry->size)); } void _socket_sendrecvmsg_init(INIT_FUNC_ARGS) { REGISTER_LONG_CONSTANT("IPV6_RECVPKTINFO", IPV6_RECVPKTINFO, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_RECVHOPLIMIT", IPV6_RECVHOPLIMIT, CONST_CS | CONST_PERSISTENT); /* would require some effort: REGISTER_LONG_CONSTANT("IPV6_RECVRTHDR", IPV6_RECVRTHDR, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_RECVHOPOPTS", IPV6_RECVHOPOPTS, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_RECVDSTOPTS", IPV6_RECVDSTOPTS, CONST_CS | CONST_PERSISTENT); */ REGISTER_LONG_CONSTANT("IPV6_RECVTCLASS", IPV6_RECVTCLASS, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_PKTINFO", IPV6_PKTINFO, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_HOPLIMIT", IPV6_HOPLIMIT, CONST_CS | CONST_PERSISTENT); /* REGISTER_LONG_CONSTANT("IPV6_RTHDR", IPV6_RTHDR, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_HOPOPTS", IPV6_HOPOPTS, CONST_CS | CONST_PERSISTENT); REGISTER_LONG_CONSTANT("IPV6_DSTOPTS", IPV6_DSTOPTS, CONST_CS | CONST_PERSISTENT); */ REGISTER_LONG_CONSTANT("IPV6_TCLASS", IPV6_TCLASS, CONST_CS | CONST_PERSISTENT); #ifdef ZTS ancillary_mutex = tsrm_mutex_alloc(); #endif } void _socket_sendrecvmsg_shutdown(SHUTDOWN_FUNC_ARGS) { #ifdef ZTS tsrm_mutex_free(ancillary_mutex); #endif }