go/usr/gri/pretty/parser.go
Robert Griesemer 89319cfbf9 - implemented heuristic for composite literals starting with a type name:
if in a if, for, or switch header, must be parenthesized
- implemented string concatenation
- simplified a lot of code
- added many more tests: can now parse all *.go files I got my hands on
- printing output currently broken in some cases, use with -s (silent) option

R=r
OCL=16932
CL=16934
2008-10-10 16:03:32 -07:00

1464 lines
27 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Parser
import Scanner "scanner"
import AST "ast"
export type Parser struct {
verbose bool;
indent uint;
scanner *Scanner.Scanner;
tokchan *<-chan *Scanner.Token;
// Scanner.Token
pos int; // token source position
tok int; // one token look-ahead
val string; // token value (for IDENT, NUMBER, STRING only)
// Non-syntactic parser control
opt_semi bool; // true if semicolon is optional
// Nesting levels
expr_lev int; // 0 = control clause level, 1 = expr inside ()'s
scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc.
};
// ----------------------------------------------------------------------------
// Support functions
func (P *Parser) PrintIndent() {
for i := P.indent; i > 0; i-- {
print(". ");
}
}
func (P *Parser) Trace(msg string) {
if P.verbose {
P.PrintIndent();
print(msg, " {\n");
}
P.indent++; // always, so proper identation is always checked
}
func (P *Parser) Ecart() {
P.indent--; // always, so proper identation is always checked
if P.verbose {
P.PrintIndent();
print("}\n");
}
}
func (P *Parser) Next() {
if P.tokchan == nil {
P.pos, P.tok, P.val = P.scanner.Scan();
} else {
t := <-P.tokchan;
P.tok, P.pos, P.val = t.tok, t.pos, t.val;
}
P.opt_semi = false;
if P.verbose {
P.PrintIndent();
print("[", P.pos, "] ", Scanner.TokenName(P.tok), "\n");
}
}
func (P *Parser) Open(verbose bool, scanner *Scanner.Scanner, tokchan *<-chan *Scanner.Token) {
P.verbose = verbose;
P.indent = 0;
P.scanner = scanner;
P.tokchan = tokchan;
P.Next();
P.expr_lev = 1;
P.scope_lev = 0;
}
func (P *Parser) Error(pos int, msg string) {
P.scanner.Error(pos, msg);
}
func (P *Parser) Expect(tok int) {
if P.tok != tok {
P.Error(P.pos, "expected '" + Scanner.TokenName(tok) + "', found '" + Scanner.TokenName(P.tok) + "'");
}
P.Next(); // make progress in any case
}
func (P *Parser) OptSemicolon() {
if P.tok == Scanner.SEMICOLON {
P.Next();
}
}
// ----------------------------------------------------------------------------
// Common productions
func (P *Parser) TryType() (typ AST.Type, ok bool);
func (P *Parser) ParseExpression() AST.Expr;
func (P *Parser) ParseStatement() AST.Stat;
func (P *Parser) ParseDeclaration() AST.Node;
func (P *Parser) ParseIdent() *AST.Ident {
P.Trace("Ident");
ident := new(AST.Ident);
ident.pos, ident.val = P.pos, "";
if P.tok == Scanner.IDENT {
ident.val = P.val;
if P.verbose {
P.PrintIndent();
print("Ident = \"", ident.val, "\"\n");
}
P.Next();
} else {
P.Expect(Scanner.IDENT); // use Expect() error handling
}
P.Ecart();
return ident;
}
func (P *Parser) ParseIdentList() *AST.List {
P.Trace("IdentList");
list := AST.NewList();
list.Add(P.ParseIdent());
for P.tok == Scanner.COMMA {
P.Next();
list.Add(P.ParseIdent());
}
P.Ecart();
return list;
}
func (P *Parser) ParseQualifiedIdent() AST.Expr {
P.Trace("QualifiedIdent");
ident := P.ParseIdent();
var qident AST.Expr = ident;
for P.tok == Scanner.PERIOD {
pos := P.pos;
P.Next();
y := P.ParseIdent();
z := new(AST.Selector);
z.pos, z.x, z.field = pos, qident, y.val;
qident = z;
}
P.Ecart();
return qident;
}
// ----------------------------------------------------------------------------
// Types
func (P *Parser) ParseType() AST.Type {
P.Trace("Type");
typ, ok := P.TryType();
if !ok {
P.Error(P.pos, "type expected");
}
P.Ecart();
return typ;
}
func (P *Parser) ParseVarType() AST.Type {
P.Trace("VarType");
typ := P.ParseType();
P.Ecart();
return typ;
}
func (P *Parser) ParseTypeName() AST.Type {
P.Trace("TypeName");
typ := P.ParseQualifiedIdent();
P.Ecart();
return typ;
}
func (P *Parser) ParseArrayType() *AST.ArrayType {
P.Trace("ArrayType");
typ := new(AST.ArrayType);
typ.pos = P.pos;
typ.len_ = AST.NIL;
P.Expect(Scanner.LBRACK);
if P.tok != Scanner.RBRACK {
// TODO set typ.len
typ.len_ = P.ParseExpression();
}
P.Expect(Scanner.RBRACK);
typ.elt = P.ParseType();
P.Ecart();
return typ;
}
func (P *Parser) ParseChannelType() *AST.ChannelType {
P.Trace("ChannelType");
typ := new(AST.ChannelType);
typ.pos = P.pos;
typ.mode = AST.FULL;
if P.tok == Scanner.CHAN {
P.Next();
if P.tok == Scanner.ARROW {
P.Next();
typ.mode = AST.SEND;
}
} else {
P.Expect(Scanner.ARROW);
P.Expect(Scanner.CHAN);
typ.mode = AST.RECV;
}
typ.elt = P.ParseVarType();
P.Ecart();
return typ;
}
func (P *Parser) ParseVarDeclList() *AST.VarDeclList {
P.Trace("VarDeclList");
vars := new(AST.VarDeclList);
vars.idents = AST.NewList();
vars.typ = AST.NIL;
vars.idents.Add(P.ParseType());
for P.tok == Scanner.COMMA {
P.Next();
vars.idents.Add(P.ParseType());
}
var ok bool;
vars.typ, ok = P.TryType();
if !ok {
// we must have a list of types
}
P.Ecart();
return vars;
}
// Returns a list of *AST.VarDeclList or Type
func (P *Parser) ParseParameterList() *AST.List {
P.Trace("ParameterList");
list := AST.NewList();
list.Add(P.ParseVarDeclList());
for P.tok == Scanner.COMMA {
P.Next();
list.Add(P.ParseVarDeclList());
}
P.Ecart();
return list;
}
// Returns a list of AST.VarDeclList
func (P *Parser) ParseParameters() *AST.List {
P.Trace("Parameters");
var list *AST.List;
P.Expect(Scanner.LPAREN);
if P.tok != Scanner.RPAREN {
list = P.ParseParameterList();
}
P.Expect(Scanner.RPAREN);
P.Ecart();
return list;
}
func (P *Parser) ParseResultList() {
P.Trace("ResultList");
P.ParseType();
for P.tok == Scanner.COMMA {
P.Next();
P.ParseType();
}
if P.tok != Scanner.RPAREN {
P.ParseType();
}
P.Ecart();
}
func (P *Parser) ParseResult() *AST.List {
P.Trace("Result");
var result *AST.List;
if P.tok == Scanner.LPAREN {
result = P.ParseParameters();
} else {
typ, ok := P.TryType();
if ok {
vars := new(AST.VarDeclList);
vars.typ = typ;
list := AST.NewList();
list.Add(vars);
result = list;
}
}
P.Ecart();
return result;
}
// Function types
//
// (params)
// (params) type
// (params) (results)
func (P *Parser) ParseFunctionType() *AST.FunctionType {
P.Trace("FunctionType");
typ := new(AST.FunctionType);
typ.pos = P.pos;
typ.params = P.ParseParameters();
typ.result = P.ParseResult();
P.Ecart();
return typ;
}
func (P *Parser) ParseMethodDecl() *AST.MethodDecl {
P.Trace("MethodDecl");
decl := new(AST.MethodDecl);
decl.ident = P.ParseIdent();
decl.typ = P.ParseFunctionType();
P.Ecart();
return decl;
}
func (P *Parser) ParseInterfaceType() *AST.InterfaceType {
P.Trace("InterfaceType");
typ := new(AST.InterfaceType);
typ.pos = P.pos;
typ.methods = AST.NewList();
P.Expect(Scanner.INTERFACE);
if P.tok == Scanner.LBRACE {
P.Next();
for P.tok == Scanner.IDENT {
typ.methods.Add(P.ParseMethodDecl());
if P.tok != Scanner.RBRACE {
P.Expect(Scanner.SEMICOLON);
}
}
P.Expect(Scanner.RBRACE);
}
P.Ecart();
return typ;
}
func (P *Parser) ParseMapType() *AST.MapType {
P.Trace("MapType");
typ := new(AST.MapType);
typ.pos = P.pos;
P.Expect(Scanner.MAP);
P.Expect(Scanner.LBRACK);
typ.key = P.ParseVarType();
P.Expect(Scanner.RBRACK);
typ.val = P.ParseVarType();
P.Ecart();
return typ;
}
func (P *Parser) ParseStructType() *AST.StructType {
P.Trace("StructType");
typ := new(AST.StructType);
typ.pos = P.pos;
typ.fields = AST.NewList();
P.Expect(Scanner.STRUCT);
if P.tok == Scanner.LBRACE {
P.Next();
for P.tok == Scanner.IDENT {
typ.fields.Add(P.ParseVarDeclList());
if P.tok != Scanner.RBRACE {
P.Expect(Scanner.SEMICOLON);
}
}
P.OptSemicolon();
P.Expect(Scanner.RBRACE);
}
P.Ecart();
return typ;
}
func (P *Parser) ParsePointerType() *AST.PointerType {
P.Trace("PointerType");
typ := new(AST.PointerType);
typ.pos = P.pos;
P.Expect(Scanner.MUL);
typ.base = P.ParseType();
P.Ecart();
return typ;
}
// Returns false if no type was found.
func (P *Parser) TryType() (typ_ AST.Type, ok_ bool) {
P.Trace("Type (try)");
var typ AST.Type = AST.NIL;
found := true;
switch P.tok {
case Scanner.IDENT: typ = P.ParseTypeName();
case Scanner.LBRACK: typ = P.ParseArrayType();
case Scanner.CHAN, Scanner.ARROW: typ = P.ParseChannelType();
case Scanner.INTERFACE: typ = P.ParseInterfaceType();
case Scanner.LPAREN: typ = P.ParseFunctionType();
case Scanner.MAP: typ = P.ParseMapType();
case Scanner.STRUCT: typ = P.ParseStructType();
case Scanner.MUL: typ = P.ParsePointerType();
default: found = false;
}
P.Ecart();
return typ, found;
}
// ----------------------------------------------------------------------------
// Blocks
func (P *Parser) ParseStatementList() *AST.List {
P.Trace("StatementList");
stats := AST.NewList();
for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
stats.Add(P.ParseStatement());
if P.tok == Scanner.SEMICOLON {
P.Next();
} else if P.opt_semi {
P.opt_semi = false; // "consume" optional semicolon
} else {
break;
}
}
P.Ecart();
return stats;
}
func (P *Parser) ParseBlock() *AST.Block {
P.Trace("Block");
block := new(AST.Block);
block.pos = P.pos;
P.Expect(Scanner.LBRACE);
if P.tok != Scanner.RBRACE {
block.stats = P.ParseStatementList();
}
P.OptSemicolon();
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
P.Ecart();
return block;
}
// ----------------------------------------------------------------------------
// Expressions
func (P *Parser) ParseExpressionList(list *AST.List) {
P.Trace("ExpressionList");
list.Add(P.ParseExpression());
for P.tok == Scanner.COMMA {
P.Next();
list.Add(P.ParseExpression());
}
P.Ecart();
}
func (P *Parser) ParseNewExpressionList() *AST.List {
list := AST.NewList();
P.ParseExpressionList(list);
return list;
}
func (P *Parser) ParseFunctionLit() *AST.FunctionLit {
P.Trace("FunctionLit");
fun := new(AST.FunctionLit);
fun.pos = P.pos;
P.Expect(Scanner.FUNC);
fun.typ = P.ParseFunctionType();
P.scope_lev++;
fun.body = P.ParseBlock();
P.scope_lev--;
P.Ecart();
return fun;
}
func (P *Parser) ParseExpressionPair() AST.Expr {
P.Trace("ExpressionPair");
p := new(AST.Pair);
p.x = P.ParseExpression();
p.pos = P.pos;
P.Expect(Scanner.COLON);
p.y = P.ParseExpression();
P.Ecart();
return p;
}
func (P *Parser) ParseExpressionPairList(list *AST.List) {
P.Trace("ExpressionPairList");
list.Add(P.ParseExpressionPair());
for P.tok == Scanner.COMMA {
P.Next();
list.Add(P.ParseExpressionPair());
}
P.Ecart();
}
func (P *Parser) ParseOperand() AST.Expr {
P.Trace("Operand");
var op AST.Expr;
switch P.tok {
case Scanner.IDENT:
op = P.ParseIdent();
case Scanner.LPAREN:
P.Next();
P.expr_lev++;
op = P.ParseExpression();
P.expr_lev--;
P.Expect(Scanner.RPAREN);
case Scanner.INT, Scanner.FLOAT:
lit := new(AST.Literal);
lit.pos, lit.tok, lit.val = P.pos, P.tok, P.val;
op = lit;
P.Next();
case Scanner.STRING:
lit := new(AST.Literal);
lit.pos, lit.tok = P.pos, P.tok;
for P.tok == Scanner.STRING {
lit.val += P.val;
P.Next();
}
op = lit;
case Scanner.FUNC:
op = P.ParseFunctionLit();
default:
typ, ok := P.TryType();
if ok {
op = typ;
break;
}
P.Error(P.pos, "operand expected");
P.Next(); // make progress
}
P.Ecart();
return op;
}
func (P *Parser) ParseSelectorOrTypeGuard(x AST.Expr) AST.Expr {
P.Trace("SelectorOrTypeGuard");
pos := P.pos;
P.Expect(Scanner.PERIOD);
if P.tok == Scanner.IDENT {
ident := P.ParseIdent();
z := new(AST.Selector);
z.pos, z.x, z.field = pos, x, ident.val;
x = z;
} else {
P.Expect(Scanner.LPAREN);
P.ParseType();
P.Expect(Scanner.RPAREN);
}
P.Ecart();
return x;
}
func (P *Parser) ParseIndexOrSlice(x AST.Expr) AST.Expr {
P.Trace("IndexOrSlice");
pos := P.pos;
P.Expect(Scanner.LBRACK);
i := P.ParseExpression();
if P.tok == Scanner.COLON {
P.Next();
j := P.ParseExpression();
// TODO: handle this case
}
P.Expect(Scanner.RBRACK);
z := new(AST.Index);
z.pos, z.x, z.index = pos, x, i;
P.Ecart();
return z;
}
func (P *Parser) ParseCall(x AST.Expr) *AST.Call {
P.Trace("Call");
call := new(AST.Call);
call.pos = P.pos;
call.fun = x;
call.args = nil;
P.Expect(Scanner.LPAREN);
if P.tok != Scanner.RPAREN {
call.args = P.ParseNewExpressionList();
}
P.Expect(Scanner.RPAREN);
P.Ecart();
return call;
}
func (P *Parser) ParseCompositeLit(typ AST.Type) AST.Expr {
P.Trace("CompositeLit");
lit := new(AST.CompositeLit);
lit.pos = P.pos;
lit.typ = typ;
lit.vals = AST.NewList();
P.Expect(Scanner.LBRACE);
if P.tok != Scanner.RBRACE {
x := P.ParseExpression();
if P.tok == Scanner.COMMA {
P.Next();
lit.vals.Add(x);
if P.tok != Scanner.RBRACE {
P.ParseExpressionList(lit.vals);
}
} else if P.tok == Scanner.COLON {
p := new(AST.Pair);
p.pos = P.pos;
p.x = x;
P.Next();
p.y = P.ParseExpression();
lit.vals.Add(p);
if P.tok == Scanner.COMMA {
P.Next();
if P.tok != Scanner.RBRACE {
P.ParseExpressionPairList(lit.vals);
}
}
} else {
lit.vals.Add(x);
}
}
P.Expect(Scanner.RBRACE);
P.Ecart();
return lit;
}
func (P *Parser) ParsePrimaryExpr() AST.Expr {
P.Trace("PrimaryExpr");
x := P.ParseOperand();
for {
switch P.tok {
case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x);
case Scanner.LBRACK: x = P.ParseIndexOrSlice(x);
case Scanner.LPAREN: x = P.ParseCall(x);
case Scanner.LBRACE:
if P.expr_lev > 0 {
x = P.ParseCompositeLit(x);
} else {
goto exit;
}
default: goto exit;
}
}
exit:
P.Ecart();
return x;
}
func (P *Parser) ParseUnaryExpr() AST.Expr {
P.Trace("UnaryExpr");
var x AST.Expr = AST.NIL;
switch P.tok {
case
Scanner.ADD, Scanner.SUB,
Scanner.NOT, Scanner.XOR,
Scanner.MUL, Scanner.ARROW,
Scanner.AND:
pos, tok := P.pos, P.tok;
P.Next();
y := P.ParseUnaryExpr();
z := new(AST.Unary);
z.pos, z.tok, z.x = pos, tok, y;
x = z;
default:
x = P.ParsePrimaryExpr();
}
P.Ecart();
return x;
}
func (P *Parser) ParseBinaryExpr(prec1 int) AST.Expr {
P.Trace("BinaryExpr");
x := P.ParseUnaryExpr();
for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- {
for Scanner.Precedence(P.tok) == prec {
pos, tok := P.pos, P.tok;
P.Next();
y := P.ParseBinaryExpr(prec + 1);
z := new(AST.Binary);
z.pos, z.tok, z.x, z.y = pos, tok, x, y;
x = z;
}
}
P.Ecart();
return x;
}
func (P *Parser) ParseExpression() AST.Expr {
P.Trace("Expression");
indent := P.indent;
x := P.ParseBinaryExpr(1);
if indent != P.indent {
panic("imbalanced tracing code (Expression)");
}
P.Ecart();
return x;
}
// ----------------------------------------------------------------------------
// Statements
func (P *Parser) ParseSimpleStat() AST.Stat {
P.Trace("SimpleStat");
var stat AST.Stat = AST.NIL;
x := P.ParseNewExpressionList();
switch P.tok {
case Scanner.COLON:
// label declaration
l := new(AST.Label);
l.pos = P.pos;
if x.len() == 1 {
l.ident = x.at(0);
} else {
P.Error(P.pos, "illegal label declaration");
l.ident = AST.NIL;
}
P.Next(); // consume ":"
P.opt_semi = true;
stat = l;
case
Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN,
Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN,
Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN,
Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN:
pos, tok := P.pos, P.tok;
P.Next();
y := P.ParseNewExpressionList();
a := new(AST.Assignment);
a.pos, a.tok, a.lhs, a.rhs = pos, tok, x, y;
stat = a;
default:
if P.tok == Scanner.INC || P.tok == Scanner.DEC {
s := new(AST.IncDecStat);
s.pos, s.tok = P.pos, P.tok;
if x.len() == 1 {
s.expr = x.at(0);
} else {
P.Error(P.pos, "more then one operand");
}
P.Next();
stat = s;
} else {
s := new(AST.ExprStat);
if x != nil && x.len() > 0 {
s.expr = x.at(0);
} else {
// this is a syntax error
s.expr = AST.NIL;
}
stat = s;
}
}
P.Ecart();
return stat;
}
func (P *Parser) ParseGoStat() *AST.GoStat {
P.Trace("GoStat");
stat := new(AST.GoStat);
stat.pos = P.pos;
P.Expect(Scanner.GO);
stat.expr = P.ParseExpression();
P.Ecart();
return stat;
}
func (P *Parser) ParseReturnStat() *AST.ReturnStat {
P.Trace("ReturnStat");
stat := new(AST.ReturnStat);
stat.pos = P.pos;
P.Expect(Scanner.RETURN);
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE {
stat.res = P.ParseNewExpressionList();
}
P.Ecart();
return stat;
}
func (P *Parser) ParseControlFlowStat(tok int) *AST.ControlFlowStat {
P.Trace("ControlFlowStat");
stat := new(AST.ControlFlowStat);
stat.pos, stat.tok = P.pos, P.tok;
P.Expect(tok);
if P.tok == Scanner.IDENT {
stat.label = P.ParseIdent();
}
P.Ecart();
return stat;
}
func (P *Parser) ParseControlClause(keyword int) *AST.ControlClause {
P.Trace("StatHeader");
ctrl := new(AST.ControlClause);
ctrl.init, ctrl.expr, ctrl.post = AST.NIL, AST.NIL, AST.NIL;
P.Expect(keyword);
if P.tok != Scanner.LBRACE {
prev_lev := P.expr_lev;
P.expr_lev = 0;
if P.tok != Scanner.SEMICOLON {
ctrl.init = P.ParseSimpleStat();
ctrl.has_init = true;
}
if P.tok == Scanner.SEMICOLON {
P.Next();
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE {
ctrl.expr = P.ParseExpression();
ctrl.has_expr = true;
}
if keyword == Scanner.FOR {
P.Expect(Scanner.SEMICOLON);
if P.tok != Scanner.LBRACE {
ctrl.post = P.ParseSimpleStat();
ctrl.has_post = true;
}
}
} else {
ctrl.expr, ctrl.has_expr = ctrl.init, ctrl.has_init;
ctrl.init, ctrl.has_init = AST.NIL, false;
}
P.expr_lev = prev_lev;
}
P.Ecart();
return ctrl;
}
func (P *Parser) ParseIfStat() *AST.IfStat {
P.Trace("IfStat");
stat := new(AST.IfStat);
stat.pos = P.pos;
stat.ctrl = P.ParseControlClause(Scanner.IF);
stat.then = P.ParseBlock();
if P.tok == Scanner.ELSE {
P.Next();
if P.tok == Scanner.IF {
stat.else_ = P.ParseIfStat();
} else {
// TODO: Should be P.ParseBlock().
stat.else_ = P.ParseStatement();
}
stat.has_else = true;
}
P.Ecart();
return stat;
}
func (P *Parser) ParseForStat() *AST.ForStat {
P.Trace("ForStat");
stat := new(AST.ForStat);
stat.pos = P.pos;
stat.ctrl = P.ParseControlClause(Scanner.FOR);
stat.body = P.ParseBlock();
P.Ecart();
return stat;
}
func (P *Parser) ParseCase() *AST.CaseClause {
P.Trace("Case");
clause := new(AST.CaseClause);
clause.pos = P.pos;
if P.tok == Scanner.CASE {
P.Next();
clause.exprs = P.ParseNewExpressionList();
} else {
P.Expect(Scanner.DEFAULT);
}
P.Expect(Scanner.COLON);
P.Ecart();
return clause;
}
func (P *Parser) ParseCaseClause() *AST.CaseClause {
P.Trace("CaseClause");
clause := P.ParseCase();
if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE {
clause.stats = P.ParseStatementList();
}
P.Ecart();
return clause;
}
func (P *Parser) ParseSwitchStat() *AST.SwitchStat {
P.Trace("SwitchStat");
stat := new(AST.SwitchStat);
stat.pos = P.pos;
stat.ctrl = P.ParseControlClause(Scanner.SWITCH);
stat.cases = AST.NewList();
P.Expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
stat.cases.Add(P.ParseCaseClause());
}
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
P.Ecart();
return stat;
}
func (P *Parser) ParseCommCase() {
P.Trace("CommCase");
if P.tok == Scanner.CASE {
P.Next();
P.ParseExpression();
if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE {
P.Next();
P.Expect(Scanner.ARROW);
P.ParseExpression();
}
} else {
P.Expect(Scanner.DEFAULT);
}
P.Expect(Scanner.COLON);
P.Ecart();
}
func (P *Parser) ParseCommClause() {
P.Trace("CommClause");
P.ParseCommCase();
if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE {
P.ParseStatementList();
}
P.Ecart();
}
func (P *Parser) ParseSelectStat() {
P.Trace("SelectStat");
P.Expect(Scanner.SELECT);
P.Expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
P.ParseCommClause();
}
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
P.Ecart();
}
func (P *Parser) ParseFallthroughStat() {
P.Trace("FallthroughStat");
P.Expect(Scanner.FALLTHROUGH);
P.Ecart();
}
func (P *Parser) ParseEmptyStat() {
P.Trace("EmptyStat");
P.Ecart();
}
func (P *Parser) ParseRangeStat() {
P.Trace("RangeStat");
P.Expect(Scanner.RANGE);
P.ParseIdentList();
P.Expect(Scanner.DEFINE);
P.ParseExpression();
P.ParseBlock();
P.Ecart();;
}
func (P *Parser) ParseStatement() AST.Stat {
P.Trace("Statement");
indent := P.indent;
var stat AST.Stat = AST.NIL;
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
stat = P.ParseDeclaration();
case Scanner.FUNC:
// for now we do not allow local function declarations
fallthrough;
case
// only the tokens that are legal top-level expression starts
Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand
Scanner.LBRACK, Scanner.STRUCT, // composite type
Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary
stat = P.ParseSimpleStat();
case Scanner.GO:
stat = P.ParseGoStat();
case Scanner.RETURN:
stat = P.ParseReturnStat();
case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO:
stat = P.ParseControlFlowStat(P.tok);
case Scanner.LBRACE:
stat = P.ParseBlock();
case Scanner.IF:
stat = P.ParseIfStat();
case Scanner.FOR:
stat = P.ParseForStat();
case Scanner.SWITCH:
stat = P.ParseSwitchStat();
case Scanner.RANGE:
P.ParseRangeStat();
case Scanner.SELECT:
P.ParseSelectStat();
case Scanner.FALLTHROUGH:
P.ParseFallthroughStat();
default:
P.ParseEmptyStat(); // for complete tracing output only
}
if indent != P.indent {
panic("imbalanced tracing code (Statement)");
}
P.Ecart();
return stat;
}
// ----------------------------------------------------------------------------
// Declarations
func (P *Parser) ParseImportSpec() *AST.ImportDecl {
P.Trace("ImportSpec");
decl := new(AST.ImportDecl);
if P.tok == Scanner.PERIOD {
P.Error(P.pos, `"import ." not yet handled properly`);
P.Next();
} else if P.tok == Scanner.IDENT {
decl.ident = P.ParseIdent();
}
if P.tok == Scanner.STRING {
// TODO eventually the scanner should strip the quotes
decl.file = P.val;
P.Next();
} else {
P.Expect(Scanner.STRING); // use Expect() error handling
}
P.Ecart();
return decl;
}
func (P *Parser) ParseConstSpec(exported bool) *AST.ConstDecl {
P.Trace("ConstSpec");
decl := new(AST.ConstDecl);
decl.ident = P.ParseIdent();
var ok bool;
decl.typ, ok = P.TryType();
decl.val = AST.NIL;
if P.tok == Scanner.ASSIGN {
P.Next();
decl.val = P.ParseExpression();
}
P.Ecart();
return decl;
}
func (P *Parser) ParseTypeSpec(exported bool) *AST.TypeDecl {
P.Trace("TypeSpec");
decl := new(AST.TypeDecl);
decl.ident = P.ParseIdent();
decl.typ = P.ParseType();
P.opt_semi = true;
P.Ecart();
return decl;
}
func (P *Parser) ParseVarSpec(exported bool) *AST.VarDecl {
P.Trace("VarSpec");
decl := new(AST.VarDecl);
decl.idents = P.ParseIdentList();
if P.tok == Scanner.ASSIGN {
P.Next();
decl.typ = AST.NIL;
decl.vals = P.ParseNewExpressionList();
} else {
decl.typ = P.ParseVarType();
if P.tok == Scanner.ASSIGN {
P.Next();
decl.vals = P.ParseNewExpressionList();
}
}
P.Ecart();
return decl;
}
// TODO Replace this by using function pointers derived from methods.
func (P *Parser) ParseSpec(exported bool, keyword int) AST.Decl {
switch keyword {
case Scanner.IMPORT: return P.ParseImportSpec();
case Scanner.CONST: return P.ParseConstSpec(exported);
case Scanner.TYPE: return P.ParseTypeSpec(exported);
case Scanner.VAR: return P.ParseVarSpec(exported);
}
panic("UNREACHABLE");
return AST.NIL;
}
func (P *Parser) ParseDecl(exported bool, keyword int) *AST.Declaration {
P.Trace("Decl");
decl := new(AST.Declaration);
decl.decls = AST.NewList();
decl.pos, decl.tok = P.pos, P.tok;
P.Expect(keyword);
if P.tok == Scanner.LPAREN {
P.Next();
for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF {
decl.decls.Add(P.ParseSpec(exported, keyword));
if P.tok == Scanner.SEMICOLON {
P.Next();
} else {
break;
}
}
P.Expect(Scanner.RPAREN);
P.opt_semi = true;
} else {
decl.decls.Add(P.ParseSpec(exported, keyword));
}
P.Ecart();
return decl;
}
// Function declarations
//
// func ident (params)
// func ident (params) type
// func ident (params) (results)
// func (recv) ident (params)
// func (recv) ident (params) type
// func (recv) ident (params) (results)
func (P *Parser) ParseFunctionDecl(exported bool) *AST.FuncDecl {
P.Trace("FunctionDecl");
fun := new(AST.FuncDecl);
fun.pos = P.pos;
P.Expect(Scanner.FUNC);
var recv *AST.VarDeclList;
if P.tok == Scanner.LPAREN {
pos := P.pos;
tmp := P.ParseParameters();
if tmp.len() > 0 {
recv = tmp.at(0);
}
if recv.idents.len() != 1 {
P.Error(pos, "must have exactly one receiver");
}
}
fun.ident = P.ParseIdent();
fun.typ = P.ParseFunctionType();
fun.typ.recv = recv;
if P.tok == Scanner.LBRACE {
P.scope_lev++;
fun.body = P.ParseBlock();
P.scope_lev--;
}
P.Ecart();
return fun;
}
func (P *Parser) ParseExportDecl() {
P.Trace("ExportDecl");
// TODO This is deprecated syntax and should go away eventually.
// (Also at the moment the syntax is everything goes...)
//P.Expect(Scanner.EXPORT);
has_paren := false;
if P.tok == Scanner.LPAREN {
P.Next();
has_paren = true;
}
for P.tok == Scanner.IDENT {
ident := P.ParseIdent();
if P.tok == Scanner.COMMA {
P.Next(); // TODO this seems wrong
}
}
if has_paren {
P.Expect(Scanner.RPAREN)
}
P.Ecart();
}
func (P *Parser) ParseDeclaration() AST.Node {
P.Trace("Declaration");
indent := P.indent;
var node AST.Node;
exported := false;
if P.tok == Scanner.EXPORT {
if P.scope_lev == 0 {
exported = true;
} else {
P.Error(P.pos, "local declarations cannot be exported");
}
P.Next();
}
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
node = P.ParseDecl(exported, P.tok);
case Scanner.FUNC:
node = P.ParseFunctionDecl(exported);
case Scanner.EXPORT:
if exported {
P.Error(P.pos, "cannot mark export declaration for export");
}
P.Next();
P.ParseExportDecl();
default:
if exported && (P.tok == Scanner.IDENT || P.tok == Scanner.LPAREN) {
P.ParseExportDecl();
} else {
P.Error(P.pos, "declaration expected");
P.Next(); // make progress
}
}
if indent != P.indent {
panic("imbalanced tracing code (Declaration)");
}
P.Ecart();
return node;
}
// ----------------------------------------------------------------------------
// Program
func (P *Parser) ParseProgram() *AST.Program {
P.Trace("Program");
pos := P.pos;
P.Expect(Scanner.PACKAGE);
ident := P.ParseIdent();
decls := AST.NewList();
for P.tok == Scanner.IMPORT {
decls.Add(P.ParseDecl(false, Scanner.IMPORT));
P.OptSemicolon();
}
for P.tok != Scanner.EOF {
decls.Add(P.ParseDeclaration());
P.OptSemicolon();
}
P.Ecart();
x := new(AST.Program);
x.pos, x.ident, x.decls = pos, ident, decls;
return x;
}