go/usr/gri/pretty/printer.go
Robert Griesemer 77567265a8 Preparation for moving scanner into a lib:
- separated out token definition from scanner
- cleaned up token and scanner implementation
- added comments to exported interfaces

R=r
OCL=25665
CL=25665
2009-03-03 18:25:07 -08:00

1127 lines
23 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Printer
import (
"os";
"io";
"vector";
"tabwriter";
"flag";
"fmt";
Utils "utils";
"token";
AST "ast";
SymbolTable "symboltable";
)
var (
debug = flag.Bool("debug", false, "print debugging information");
def = flag.Bool("def", false, "print 'def' instead of 'const', 'type', 'func' - experimental");
// layout control
tabwidth = flag.Int("tabwidth", 8, "tab width");
usetabs = flag.Bool("usetabs", true, "align with tabs instead of blanks");
newlines = flag.Bool("newlines", true, "respect newlines in source");
maxnewlines = flag.Int("maxnewlines", 3, "max. number of consecutive newlines");
// formatting control
comments = flag.Bool("comments", true, "print comments");
optsemicolons = flag.Bool("optsemicolons", false, "print optional semicolons");
)
// ----------------------------------------------------------------------------
// Elementary support
func unimplemented() {
panic("unimplemented");
}
func unreachable() {
panic("unreachable");
}
func assert(pred bool) {
if !pred {
panic("assertion failed");
}
}
// ----------------------------------------------------------------------------
// Printer
// Separators - printed in a delayed fashion, depending on context.
const (
none = iota;
blank;
tab;
comma;
semicolon;
)
// Semantic states - control formatting.
const (
normal = iota;
opening_scope; // controls indentation, scope level
closing_scope; // controls indentation, scope level
inside_list; // controls extra line breaks
)
type Printer struct {
// output
text io.Write;
// formatting control
html bool;
// comments
comments *vector.Vector; // the list of all comments
cindex int; // the current comments index
cpos int; // the position of the next comment
// current state
lastpos int; // pos after last string
level int; // scope level
indentation int; // indentation level (may be different from scope level)
// formatting parameters
opt_semi bool; // // true if semicolon separator is optional in statement list
separator int; // pending separator
newlines int; // pending newlines
// semantic state
state int; // current semantic state
laststate int; // state for last string
// expression precedence
prec int;
}
func (P *Printer) HasComment(pos int) bool {
return *comments && P.cpos < pos;
}
func (P *Printer) NextComment() {
P.cindex++;
if P.comments != nil && P.cindex < P.comments.Len() {
P.cpos = P.comments.At(P.cindex).(*AST.Comment).Pos;
} else {
P.cpos = 1<<30; // infinite
}
}
func (P *Printer) Init(text io.Write, html bool, comments *vector.Vector) {
// writers
P.text = text;
// formatting control
P.html = html;
// comments
P.comments = comments;
P.cindex = -1;
P.NextComment();
// formatting parameters & semantic state initialized correctly by default
// expression precedence
P.prec = token.LowestPrec;
}
// ----------------------------------------------------------------------------
// Printing support
func (P *Printer) htmlEscape(s string) string {
if P.html {
var esc string;
for i := 0; i < len(s); i++ {
switch s[i] {
case '<': esc = "&lt;";
case '&': esc = "&amp;";
default: continue;
}
return s[0 : i] + esc + P.htmlEscape(s[i+1 : len(s)]);
}
}
return s;
}
// Reduce contiguous sequences of '\t' in a string to a single '\t'.
func untabify(s string) string {
for i := 0; i < len(s); i++ {
if s[i] == '\t' {
j := i;
for j < len(s) && s[j] == '\t' {
j++;
}
if j-i > 1 { // more then one tab
return s[0 : i+1] + untabify(s[j : len(s)]);
}
}
}
return s;
}
func (P *Printer) Printf(format string, s ...) {
n, err := fmt.Fprintf(P.text, format, s);
if err != nil {
panic("print error - exiting");
}
}
func (P *Printer) Newline(n int) {
if n > 0 {
m := int(*maxnewlines);
if n > m {
n = m;
}
for ; n > 0; n-- {
P.Printf("\n");
}
for i := P.indentation; i > 0; i-- {
P.Printf("\t");
}
}
}
func (P *Printer) TaggedString(pos int, tag, s, endtag string) {
// use estimate for pos if we don't have one
if pos == 0 {
pos = P.lastpos;
}
// --------------------------------
// print pending separator, if any
// - keep track of white space printed for better comment formatting
// TODO print white space separators after potential comments and newlines
// (currently, we may get trailing white space before a newline)
trailing_char := 0;
switch P.separator {
case none: // nothing to do
case blank:
P.Printf(" ");
trailing_char = ' ';
case tab:
P.Printf("\t");
trailing_char = '\t';
case comma:
P.Printf(",");
if P.newlines == 0 {
P.Printf(" ");
trailing_char = ' ';
}
case semicolon:
if P.level > 0 { // no semicolons at level 0
P.Printf(";");
if P.newlines == 0 {
P.Printf(" ");
trailing_char = ' ';
}
}
default: panic("UNREACHABLE");
}
P.separator = none;
// --------------------------------
// interleave comments, if any
nlcount := 0;
for ; P.HasComment(pos); P.NextComment() {
// we have a comment/newline that comes before the string
comment := P.comments.At(P.cindex).(*AST.Comment);
ctext := comment.Text;
if ctext == "\n" {
// found a newline in src - count it
nlcount++;
} else {
// classify comment (len(ctext) >= 2)
//-style comment
if nlcount > 0 || P.cpos == 0 {
// only white space before comment on this line
// or file starts with comment
// - indent
if !*newlines && P.cpos != 0 {
nlcount = 1;
}
P.Newline(nlcount);
nlcount = 0;
} else {
// black space before comment on this line
if ctext[1] == '/' {
//-style comment
// - put in next cell unless a scope was just opened
// in which case we print 2 blanks (otherwise the
// entire scope gets indented like the next cell)
if P.laststate == opening_scope {
switch trailing_char {
case ' ': P.Printf(" "); // one space already printed
case '\t': // do nothing
default: P.Printf(" ");
}
} else {
if trailing_char != '\t' {
P.Printf("\t");
}
}
} else {
/*-style comment */
// - print surrounded by blanks
if trailing_char == 0 {
P.Printf(" ");
}
ctext += " ";
}
}
// print comment
if *debug {
P.Printf("[%d]", P.cpos);
}
// calling untabify increases the change for idempotent output
// since tabs in comments are also interpreted by tabwriter
P.Printf("%s", P.htmlEscape(untabify(ctext)));
if ctext[1] == '/' {
//-style comments must end in newline
if P.newlines == 0 { // don't add newlines if not needed
P.newlines = 1;
}
}
}
}
// At this point we may have nlcount > 0: In this case we found newlines
// that were not followed by a comment. They are recognized (or not) when
// printing newlines below.
// --------------------------------
// interpret state
// (any pending separator or comment must be printed in previous state)
switch P.state {
case normal:
case opening_scope:
case closing_scope:
P.indentation--;
case inside_list:
default:
panic("UNREACHABLE");
}
// --------------------------------
// print pending newlines
if *newlines && (P.newlines > 0 || P.state == inside_list) && nlcount > P.newlines {
// Respect additional newlines in the source, but only if we
// enabled this feature (newlines.BVal()) and we are expecting
// newlines (P.newlines > 0 || P.state == inside_list).
// Otherwise - because we don't have all token positions - we
// get funny formatting.
P.newlines = nlcount;
}
nlcount = 0;
P.Newline(P.newlines);
P.newlines = 0;
// --------------------------------
// print string
if *debug {
P.Printf("[%d]", pos);
}
P.Printf("%s%s%s", tag, P.htmlEscape(s), endtag);
// --------------------------------
// interpret state
switch P.state {
case normal:
case opening_scope:
P.level++;
P.indentation++;
case closing_scope:
P.level--;
case inside_list:
default:
panic("UNREACHABLE");
}
P.laststate = P.state;
P.state = none;
// --------------------------------
// done
P.opt_semi = false;
P.lastpos = pos + len(s); // rough estimate
}
func (P *Printer) String(pos int, s string) {
P.TaggedString(pos, "", s, "");
}
func (P *Printer) Token(pos int, tok int) {
P.String(pos, token.TokenString(tok));
//P.TaggedString(pos, "<b>", token.TokenString(tok), "</b>");
}
func (P *Printer) Error(pos int, tok int, msg string) {
fmt.Printf("\ninternal printing error: pos = %d, tok = %s, %s\n", pos, token.TokenString(tok), msg);
panic();
}
// ----------------------------------------------------------------------------
// HTML support
func (P *Printer) HtmlPrologue(title string) {
if P.html {
P.TaggedString(0,
"<html>\n"
"<head>\n"
" <META HTTP-EQUIV=\"Content-Type\" CONTENT=\"text/html; charset=UTF-8\">\n"
" <title>" + P.htmlEscape(title) + "</title>\n"
" <style type=\"text/css\">\n"
" </style>\n"
"</head>\n"
"<body>\n"
"<pre>\n",
"", ""
)
}
}
func (P *Printer) HtmlEpilogue() {
if P.html {
P.TaggedString(0,
"</pre>\n"
"</body>\n"
"<html>\n",
"", ""
)
}
}
func (P *Printer) HtmlIdentifier(x *AST.Ident) {
obj := x.Obj;
if P.html && obj.Kind != SymbolTable.NONE {
// depending on whether we have a declaration or use, generate different html
// - no need to htmlEscape ident
id := Utils.IntToString(obj.Id, 10);
if x.Pos_ == obj.Pos {
// probably the declaration of x
P.TaggedString(x.Pos_, `<a name="id` + id + `">`, obj.Ident, `</a>`);
} else {
// probably not the declaration of x
P.TaggedString(x.Pos_, `<a href="#id` + id + `">`, obj.Ident, `</a>`);
}
} else {
P.String(x.Pos_, obj.Ident);
}
}
func (P *Printer) HtmlPackageName(pos int, name string) {
if P.html {
sname := name[1 : len(name)-1]; // strip quotes TODO do this elsewhere eventually
// TODO CAPITAL HACK BELOW FIX THIS
P.TaggedString(pos, `"<a href="/src/lib/` + sname + `.go">`, sname, `</a>"`);
} else {
P.String(pos, name);
}
}
// ----------------------------------------------------------------------------
// Support
func (P *Printer) Expr(x AST.Expr)
func (P *Printer) Idents(list []*AST.Ident) {
for i, x := range list {
if i > 0 {
P.Token(0, token.COMMA);
P.separator = blank;
P.state = inside_list;
}
P.Expr(x);
}
}
func (P *Printer) Parameters(list []*AST.Field) {
P.Token(0, token.LPAREN);
if len(list) > 0 {
for i, par := range list {
if i > 0 {
P.separator = comma;
}
if len(par.Idents) > 0 {
P.Idents(par.Idents);
P.separator = blank
};
P.Expr(par.Typ);
}
}
P.Token(0, token.RPAREN);
}
// Returns the separator (semicolon or none) required if
// the type is terminating a declaration or statement.
func (P *Printer) Signature(sig *AST.Signature) {
P.Parameters(sig.Params);
if sig.Result != nil {
P.separator = blank;
if len(sig.Result) == 1 && sig.Result[0].Idents == nil {
// single anonymous result
// => no parentheses needed unless it's a function type
fld := sig.Result[0];
if dummy, is_ftyp := fld.Typ.(*AST.FunctionType); !is_ftyp {
P.Expr(fld.Typ);
return;
}
}
P.Parameters(sig.Result);
}
}
func (P *Printer) Fields(list []*AST.Field, end int, is_interface bool) {
P.state = opening_scope;
P.separator = blank;
P.Token(0, token.LBRACE);
if len(list) > 0 {
P.newlines = 1;
for i, fld := range list {
if i > 0 {
P.separator = semicolon;
P.newlines = 1;
}
if len(fld.Idents) > 0 {
P.Idents(fld.Idents);
P.separator = tab
};
if is_interface {
if ftyp, is_ftyp := fld.Typ.(*AST.FunctionType); is_ftyp {
P.Signature(ftyp.Sig);
} else {
P.Expr(fld.Typ);
}
} else {
P.Expr(fld.Typ);
if fld.Tag != nil {
P.separator = tab;
P.Expr(fld.Tag);
}
}
}
P.newlines = 1;
}
P.state = closing_scope;
P.Token(end, token.RBRACE);
P.opt_semi = true;
}
// ----------------------------------------------------------------------------
// Expressions
func (P *Printer) Block(b *AST.Block, indent bool)
func (P *Printer) Expr1(x AST.Expr, prec1 int)
func (P *Printer) DoBadExpr(x *AST.BadExpr) {
P.String(0, "BadExpr");
}
func (P *Printer) DoIdent(x *AST.Ident) {
P.HtmlIdentifier(x);
}
func (P *Printer) DoBinaryExpr(x *AST.BinaryExpr) {
if x.Tok == token.COMMA {
// (don't use binary expression printing because of different spacing)
P.Expr(x.X);
P.Token(x.Pos_, token.COMMA);
P.separator = blank;
P.state = inside_list;
P.Expr(x.Y);
} else {
prec := token.Precedence(x.Tok);
if prec < P.prec {
P.Token(0, token.LPAREN);
}
P.Expr1(x.X, prec);
P.separator = blank;
P.Token(x.Pos_, x.Tok);
P.separator = blank;
P.Expr1(x.Y, prec);
if prec < P.prec {
P.Token(0, token.RPAREN);
}
}
}
func (P *Printer) DoUnaryExpr(x *AST.UnaryExpr) {
prec := token.UnaryPrec;
if prec < P.prec {
P.Token(0, token.LPAREN);
}
P.Token(x.Pos_, x.Tok);
if x.Tok == token.RANGE {
P.separator = blank;
}
P.Expr1(x.X, prec);
if prec < P.prec {
P.Token(0, token.RPAREN);
}
}
func (P *Printer) DoBasicLit(x *AST.BasicLit) {
P.String(x.Pos_, x.Val);
}
func (P *Printer) DoFunctionLit(x *AST.FunctionLit) {
P.Token(x.Pos_, token.FUNC);
P.Signature(x.Typ);
P.separator = blank;
P.Block(x.Body, true);
P.newlines = 0;
}
func (P *Printer) DoGroup(x *AST.Group) {
P.Token(x.Pos_, token.LPAREN);
P.Expr(x.X);
P.Token(0, token.RPAREN);
}
func (P *Printer) DoSelector(x *AST.Selector) {
P.Expr1(x.X, token.HighestPrec);
P.Token(x.Pos_, token.PERIOD);
P.Expr1(x.Sel, token.HighestPrec);
}
func (P *Printer) DoTypeGuard(x *AST.TypeGuard) {
P.Expr1(x.X, token.HighestPrec);
P.Token(x.Pos_, token.PERIOD);
P.Token(0, token.LPAREN);
P.Expr(x.Typ);
P.Token(0, token.RPAREN);
}
func (P *Printer) DoIndex(x *AST.Index) {
P.Expr1(x.X, token.HighestPrec);
P.Token(x.Pos_, token.LBRACK);
P.Expr1(x.I, 0);
P.Token(0, token.RBRACK);
}
func (P *Printer) DoCall(x *AST.Call) {
P.Expr1(x.F, token.HighestPrec);
P.Token(x.Pos_, x.Tok);
P.Expr(x.Args);
switch x.Tok {
case token.LPAREN: P.Token(0, token.RPAREN);
case token.LBRACE: P.Token(0, token.RBRACE);
}
}
func (P *Printer) DoEllipsis(x *AST.Ellipsis) {
P.Token(x.Pos_, token.ELLIPSIS);
}
func (P *Printer) DoArrayType(x *AST.ArrayType) {
P.Token(x.Pos_, token.LBRACK);
if x.Len != nil {
P.Expr(x.Len);
}
P.Token(0, token.RBRACK);
P.Expr(x.Elt);
}
func (P *Printer) DoStructType(x *AST.StructType) {
P.Token(x.Pos_, token.STRUCT);
if x.End > 0 {
P.Fields(x.Fields, x.End, false);
}
}
func (P *Printer) DoPointerType(x *AST.PointerType) {
P.Token(x.Pos_, token.MUL);
P.Expr(x.Base);
}
func (P *Printer) DoFunctionType(x *AST.FunctionType) {
P.Token(x.Pos_, token.FUNC);
P.Signature(x.Sig);
}
func (P *Printer) DoInterfaceType(x *AST.InterfaceType) {
P.Token(x.Pos_, token.INTERFACE);
if x.End > 0 {
P.Fields(x.Methods, x.End, true);
}
}
func (P *Printer) DoSliceType(x *AST.SliceType) {
unimplemented();
}
func (P *Printer) DoMapType(x *AST.MapType) {
P.Token(x.Pos_, token.MAP);
P.separator = blank;
P.Token(0, token.LBRACK);
P.Expr(x.Key);
P.Token(0, token.RBRACK);
P.Expr(x.Val);
}
func (P *Printer) DoChannelType(x *AST.ChannelType) {
switch x.Mode {
case AST.FULL:
P.Token(x.Pos_, token.CHAN);
case AST.RECV:
P.Token(x.Pos_, token.ARROW);
P.Token(0, token.CHAN);
case AST.SEND:
P.Token(x.Pos_, token.CHAN);
P.separator = blank;
P.Token(0, token.ARROW);
}
P.separator = blank;
P.Expr(x.Val);
}
func (P *Printer) Expr1(x AST.Expr, prec1 int) {
if x == nil {
return; // empty expression list
}
saved_prec := P.prec;
P.prec = prec1;
x.Visit(P);
P.prec = saved_prec;
}
func (P *Printer) Expr(x AST.Expr) {
P.Expr1(x, token.LowestPrec);
}
// ----------------------------------------------------------------------------
// Statements
func (P *Printer) Stat(s AST.Stat) {
s.Visit(P);
}
func (P *Printer) StatementList(list *vector.Vector) {
for i := 0; i < list.Len(); i++ {
if i == 0 {
P.newlines = 1;
} else { // i > 0
if !P.opt_semi || *optsemicolons {
// semicolon is required
P.separator = semicolon;
}
}
P.Stat(list.At(i).(AST.Stat));
P.newlines = 1;
P.state = inside_list;
}
}
func (P *Printer) Block(b *AST.Block, indent bool) {
P.state = opening_scope;
P.Token(b.Pos, b.Tok);
if !indent {
P.indentation--;
}
P.StatementList(b.List);
if !indent {
P.indentation++;
}
if !*optsemicolons {
P.separator = none;
}
P.state = closing_scope;
if b.Tok == token.LBRACE {
P.Token(b.End, token.RBRACE);
P.opt_semi = true;
} else {
P.String(0, ""); // process closing_scope state transition!
}
}
func (P *Printer) Decl(d AST.Decl);
func (P *Printer) DoBadStat(s *AST.BadStat) {
panic();
}
func (P *Printer) DoLabelDecl(s *AST.LabelDecl) {
P.indentation--;
P.Expr(s.Label);
P.Token(s.Pos, token.COLON);
// TODO not quite correct:
// - we must not print this optional semicolon, as it may invalidate code.
// - this will change once the AST reflects the LabelStatement change
P.opt_semi = true;
P.indentation++;
}
func (P *Printer) DoDeclarationStat(s *AST.DeclarationStat) {
P.Decl(s.Decl);
}
func (P *Printer) DoExpressionStat(s *AST.ExpressionStat) {
switch s.Tok {
case token.ILLEGAL:
P.Expr(s.Expr);
case token.INC, token.DEC:
P.Expr(s.Expr);
P.Token(s.Pos, s.Tok);
case token.RETURN, token.GO, token.DEFER:
P.Token(s.Pos, s.Tok);
if s.Expr != nil {
P.separator = blank;
P.Expr(s.Expr);
}
default:
P.Error(s.Pos, s.Tok, "DoExpressionStat");
unreachable();
}
}
func (P *Printer) DoCompositeStat(s *AST.CompositeStat) {
P.Block(s.Body, true);
}
func (P *Printer) ControlClause(isForStat bool, init AST.Stat, expr AST.Expr, post AST.Stat) {
P.separator = blank;
if init == nil && post == nil {
// no semicolons required
if expr != nil {
P.Expr(expr);
}
} else {
// all semicolons required
// (they are not separators, print them explicitly)
if init != nil {
P.Stat(init);
P.separator = none;
}
P.Token(0, token.SEMICOLON);
P.separator = blank;
if expr != nil {
P.Expr(expr);
P.separator = none;
}
if isForStat {
P.Token(0, token.SEMICOLON);
P.separator = blank;
if post != nil {
P.Stat(post);
}
}
}
P.separator = blank;
}
func (P *Printer) DoIfStat(s *AST.IfStat) {
P.Token(s.Pos, token.IF);
P.ControlClause(false, s.Init, s.Cond, nil);
P.Block(s.Body, true);
if s.Else != nil {
P.separator = blank;
P.Token(0, token.ELSE);
P.separator = blank;
P.Stat(s.Else);
}
}
func (P *Printer) DoForStat(s *AST.ForStat) {
P.Token(s.Pos, token.FOR);
P.ControlClause(true, s.Init, s.Cond, s.Post);
P.Block(s.Body, true);
}
func (P *Printer) DoCaseClause(s *AST.CaseClause) {
if s.Expr != nil {
P.Token(s.Pos, token.CASE);
P.separator = blank;
P.Expr(s.Expr);
} else {
P.Token(s.Pos, token.DEFAULT);
}
// TODO: try to use P.Block instead
// P.Block(s.Body, true);
P.Token(s.Body.Pos, token.COLON);
P.indentation++;
P.StatementList(s.Body.List);
P.indentation--;
P.newlines = 1;
}
func (P *Printer) DoSwitchStat(s *AST.SwitchStat) {
P.Token(s.Pos, token.SWITCH);
P.ControlClause(false, s.Init, s.Tag, nil);
P.Block(s.Body, false);
}
func (P *Printer) DoSelectStat(s *AST.SelectStat) {
P.Token(s.Pos, token.SELECT);
P.separator = blank;
P.Block(s.Body, false);
}
func (P *Printer) DoControlFlowStat(s *AST.ControlFlowStat) {
P.Token(s.Pos, s.Tok);
if s.Label != nil {
P.separator = blank;
P.Expr(s.Label);
}
}
func (P *Printer) DoEmptyStat(s *AST.EmptyStat) {
P.String(s.Pos, "");
}
// ----------------------------------------------------------------------------
// Declarations
func (P *Printer) DoBadDecl(d *AST.BadDecl) {
P.String(d.Pos, "<BAD DECL>");
}
func (P *Printer) DoImportDecl(d *AST.ImportDecl) {
if d.Pos > 0 {
P.Token(d.Pos, token.IMPORT);
P.separator = blank;
}
if d.Ident != nil {
P.Expr(d.Ident);
} else {
P.String(d.Path.Pos(), ""); // flush pending ';' separator/newlines
}
P.separator = tab;
if lit, is_lit := d.Path.(*AST.BasicLit); is_lit && lit.Tok == token.STRING {
P.HtmlPackageName(lit.Pos_, lit.Val);
} else {
// we should only reach here for strange imports
// import "foo" "bar"
P.Expr(d.Path);
}
P.newlines = 2;
}
func (P *Printer) DoConstDecl(d *AST.ConstDecl) {
if d.Pos > 0 {
P.Token(d.Pos, token.CONST);
P.separator = blank;
}
P.Idents(d.Idents);
if d.Typ != nil {
P.separator = blank; // TODO switch to tab? (indentation problem with structs)
P.Expr(d.Typ);
}
if d.Vals != nil {
P.separator = tab;
P.Token(0, token.ASSIGN);
P.separator = blank;
P.Expr(d.Vals);
}
P.newlines = 2;
}
func (P *Printer) DoTypeDecl(d *AST.TypeDecl) {
if d.Pos > 0 {
P.Token(d.Pos, token.TYPE);
P.separator = blank;
}
P.Expr(d.Ident);
P.separator = blank; // TODO switch to tab? (but indentation problem with structs)
P.Expr(d.Typ);
P.newlines = 2;
}
func (P *Printer) DoVarDecl(d *AST.VarDecl) {
if d.Pos > 0 {
P.Token(d.Pos, token.VAR);
P.separator = blank;
}
P.Idents(d.Idents);
if d.Typ != nil {
P.separator = blank; // TODO switch to tab? (indentation problem with structs)
P.Expr(d.Typ);
//P.separator = P.Type(d.Typ);
}
if d.Vals != nil {
P.separator = tab;
P.Token(0, token.ASSIGN);
P.separator = blank;
P.Expr(d.Vals);
}
P.newlines = 2;
}
func (P *Printer) DoFuncDecl(d *AST.FuncDecl) {
P.Token(d.Pos_, token.FUNC);
P.separator = blank;
if recv := d.Recv; recv != nil {
// method: print receiver
P.Token(0, token.LPAREN);
if len(recv.Idents) > 0 {
P.Expr(recv.Idents[0]);
P.separator = blank;
}
P.Expr(recv.Typ);
P.Token(0, token.RPAREN);
P.separator = blank;
}
P.Expr(d.Ident);
P.Signature(d.Sig);
if d.Body != nil {
P.separator = blank;
P.Block(d.Body, true);
}
P.newlines = 2;
}
func (P *Printer) DoDeclList(d *AST.DeclList) {
if !*def || d.Tok == token.IMPORT || d.Tok == token.VAR {
P.Token(d.Pos, d.Tok);
} else {
P.String(d.Pos, "def");
}
P.separator = blank;
// group of parenthesized declarations
P.state = opening_scope;
P.Token(0, token.LPAREN);
if len(d.List) > 0 {
P.newlines = 1;
for i := 0; i < len(d.List); i++ {
if i > 0 {
P.separator = semicolon;
}
P.Decl(d.List[i]);
P.newlines = 1;
}
}
P.state = closing_scope;
P.Token(d.End, token.RPAREN);
P.opt_semi = true;
P.newlines = 2;
}
func (P *Printer) Decl(d AST.Decl) {
d.Visit(P);
}
// ----------------------------------------------------------------------------
// Program
func (P *Printer) Program(p *AST.Program) {
P.Token(p.Pos, token.PACKAGE);
P.separator = blank;
P.Expr(p.Ident);
P.newlines = 1;
for i := 0; i < len(p.Decls); i++ {
P.Decl(p.Decls[i]);
}
P.newlines = 1;
}
// ----------------------------------------------------------------------------
// External interface
func Print(writer io.Write, html bool, prog *AST.Program) {
// setup
var P Printer;
padchar := byte(' ');
if *usetabs {
padchar = '\t';
}
text := tabwriter.New(writer, *tabwidth, 1, padchar, true, html);
P.Init(text, html, prog.Comments);
// TODO would be better to make the name of the src file be the title
P.HtmlPrologue("package " + prog.Ident.(*AST.Ident).Obj.Ident);
P.Program(prog);
P.HtmlEpilogue();
P.String(0, ""); // flush pending separator/newlines
err := text.Flush();
if err != nil {
panic("print error - exiting");
}
}