// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Parser import ( "fmt"; "array"; Scanner "scanner"; AST "ast"; ) type Parser struct { // Tracing/debugging verbose, sixg, deps bool; indent uint; // Scanner scanner *Scanner.Scanner; tokchan <-chan *Scanner.Token; comments *array.Array; // Scanner.Token pos int; // token source position tok int; // one token look-ahead val string; // token value (for IDENT, NUMBER, STRING only) // Non-syntactic parser control opt_semi bool; // true if semicolon is optional // Nesting levels expr_lev int; // 0 = control clause level, 1 = expr inside ()'s scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc. // Scopes top_scope *AST.Scope; }; // ---------------------------------------------------------------------------- // Elementary support func unimplemented() { panic("unimplemented"); } func unreachable() { panic("unreachable"); } func assert(pred bool) { if !pred { panic("assertion failed"); } } // ---------------------------------------------------------------------------- // Parsing support func (P *Parser) PrintIndent() { for i := P.indent; i > 0; i-- { print(". "); } } func (P *Parser) Trace(msg string) { if P.verbose { P.PrintIndent(); print(msg, " {\n"); } P.indent++; // always check proper identation } func (P *Parser) Ecart() { P.indent--; // always check proper identation if P.verbose { P.PrintIndent(); print("}\n"); } } func (P *Parser) Next0() { if P.tokchan == nil { P.pos, P.tok, P.val = P.scanner.Scan(); } else { t := <-P.tokchan; P.tok, P.pos, P.val = t.Tok, t.Pos, t.Val; } P.opt_semi = false; if P.verbose { P.PrintIndent(); s := Scanner.TokenString(P.tok); // rewrite "{" and "}" so we don't screw up double-click selection // in terminal window (we print scopes using the same characters) switch s { case "{": s = "LBRACE"; case "}": s = "RBRACE"; } print("[", P.pos, "] ", s, "\n"); } } func (P *Parser) Next() { for P.Next0(); P.tok == Scanner.COMMENT; P.Next0() { P.comments.Push(AST.NewComment(P.pos, P.val)); } } func (P *Parser) Open(verbose, sixg, deps bool, scanner *Scanner.Scanner, tokchan <-chan *Scanner.Token) { P.verbose = verbose; P.sixg = sixg; P.deps = deps; P.indent = 0; P.scanner = scanner; P.tokchan = tokchan; P.comments = array.New(0); P.Next(); P.expr_lev = 0; P.scope_lev = 0; } func (P *Parser) Error(pos int, msg string) { P.scanner.Error(pos, msg); } func (P *Parser) Expect(tok int) { if P.tok != tok { msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'"; switch P.tok { case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING: msg += " " + P.val; } P.Error(P.pos, msg); } P.Next(); // make progress in any case } func (P *Parser) OptSemicolon() { if P.tok == Scanner.SEMICOLON { P.Next(); } } // ---------------------------------------------------------------------------- // Scopes func (P *Parser) OpenScope() { P.top_scope = AST.NewScope(P.top_scope); } func (P *Parser) CloseScope() { P.top_scope = P.top_scope.Parent; } func (P *Parser) DeclareInScope(scope *AST.Scope, x *AST.Expr, kind int, typ *AST.Type) { if P.scope_lev < 0 { panic("cannot declare objects in other packages"); } if x.Tok != Scanner.ILLEGAL { // ignore bad exprs assert(x.Tok == Scanner.IDENT); obj := x.Obj; obj.Kind = kind; obj.Typ = typ; obj.Pnolev = P.scope_lev; switch { case scope.LookupLocal(obj.Ident) == nil: scope.Insert(obj); case kind == AST.TYPE: // possibly a forward declaration case kind == AST.FUNC: // possibly a forward declaration default: P.Error(obj.Pos, `"` + obj.Ident + `" is declared already`); } } } // Declare a comma-separated list of idents or a single ident. func (P *Parser) Declare(p *AST.Expr, kind int, typ *AST.Type) { for p.Tok == Scanner.COMMA { P.DeclareInScope(P.top_scope, p.X, kind, typ); p = p.Y; } P.DeclareInScope(P.top_scope, p, kind, typ); } // ---------------------------------------------------------------------------- // AST support func exprType(x *AST.Expr) *AST.Type { var t *AST.Type; if x.Tok == Scanner.TYPE { t = x.Typ; } else if x.Tok == Scanner.IDENT { // assume a type name t = AST.NewType(x.Pos, AST.TYPENAME); t.Expr = x; } else if x.Tok == Scanner.PERIOD && x.Y != nil && exprType(x.X) != nil { // possibly a qualified (type) identifier t = AST.NewType(x.Pos, AST.TYPENAME); t.Expr = x; } return t; } func (P *Parser) NoType(x *AST.Expr) *AST.Expr { if x != nil && x.Tok == Scanner.TYPE { P.Error(x.Pos, "expected expression, found type"); val := AST.NewObject(x.Pos, AST.NONE, "0"); x = AST.NewLit(Scanner.INT, val); } return x; } func (P *Parser) NewExpr(pos, tok int, x, y *AST.Expr) *AST.Expr { return AST.NewExpr(pos, tok, P.NoType(x), P.NoType(y)); } // ---------------------------------------------------------------------------- // Common productions func (P *Parser) TryType() *AST.Type; func (P *Parser) ParseExpression(prec int) *AST.Expr; func (P *Parser) ParseStatement() *AST.Stat; func (P *Parser) ParseDeclaration() *AST.Decl; // If scope != nil, lookup identifier in scope. Otherwise create one. func (P *Parser) ParseIdent(scope *AST.Scope) *AST.Expr { P.Trace("Ident"); x := AST.BadExpr; if P.tok == Scanner.IDENT { var obj *AST.Object; if scope != nil { obj = scope.Lookup(P.val); } if obj == nil { obj = AST.NewObject(P.pos, AST.NONE, P.val); } else { assert(obj.Kind != AST.NONE); } x = AST.NewLit(Scanner.IDENT, obj); x.Pos = P.pos; // override obj.pos (incorrect if object was looked up!) if P.verbose { P.PrintIndent(); print("Ident = \"", P.val, "\"\n"); } P.Next(); } else { P.Expect(Scanner.IDENT); // use Expect() error handling } P.Ecart(); return x; } func (P *Parser) ParseIdentList() *AST.Expr { P.Trace("IdentList"); var last *AST.Expr; x := P.ParseIdent(nil); for P.tok == Scanner.COMMA { pos := P.pos; P.Next(); y := P.ParseIdent(nil); if last == nil { x = P.NewExpr(pos, Scanner.COMMA, x, y); last = x; } else { last.Y = P.NewExpr(pos, Scanner.COMMA, last.Y, y); last = last.Y; } } P.Ecart(); return x; } // ---------------------------------------------------------------------------- // Types func (P *Parser) ParseType() *AST.Type { P.Trace("Type"); t := P.TryType(); if t == nil { P.Error(P.pos, "type expected"); t = AST.BadType; } P.Ecart(); return t; } func (P *Parser) ParseVarType() *AST.Type { P.Trace("VarType"); typ := P.ParseType(); P.Ecart(); return typ; } func (P *Parser) ParseQualifiedIdent() *AST.Expr { P.Trace("QualifiedIdent"); x := P.ParseIdent(P.top_scope); for P.tok == Scanner.PERIOD { pos := P.pos; P.Next(); y := P.ParseIdent(nil); x = P.NewExpr(pos, Scanner.PERIOD, x, y); } P.Ecart(); return x; } func (P *Parser) ParseTypeName() *AST.Type { P.Trace("TypeName"); t := AST.NewType(P.pos, AST.TYPENAME); t.Expr = P.ParseQualifiedIdent(); t.Elt = t.Expr.Typ; P.Ecart(); return t; } func (P *Parser) ParseArrayType() *AST.Type { P.Trace("ArrayType"); t := AST.NewType(P.pos, AST.ARRAY); P.Expect(Scanner.LBRACK); if P.tok == Scanner.ELLIPSIS { t.Expr = P.NewExpr(P.pos, Scanner.ELLIPSIS, nil, nil); P.Next(); } else if P.tok != Scanner.RBRACK { t.Expr = P.ParseExpression(1); } P.Expect(Scanner.RBRACK); t.Elt = P.ParseType(); P.Ecart(); return t; } func (P *Parser) ParseChannelType() *AST.Type { P.Trace("ChannelType"); t := AST.NewType(P.pos, AST.CHANNEL); t.Mode = AST.FULL; if P.tok == Scanner.CHAN { P.Next(); if P.tok == Scanner.ARROW { P.Next(); t.Mode = AST.SEND; } } else { P.Expect(Scanner.ARROW); P.Expect(Scanner.CHAN); t.Mode = AST.RECV; } t.Elt = P.ParseVarType(); P.Ecart(); return t; } func (P *Parser) ParseVar(expect_ident bool) *AST.Type { t := AST.BadType; if expect_ident { x := P.ParseIdent(nil); t = AST.NewType(x.Pos, AST.TYPENAME); t.Expr = x; } else if P.tok == Scanner.ELLIPSIS { t = AST.NewType(P.pos, AST.ELLIPSIS); P.Next(); } else { t = P.ParseType(); } return t; } func (P *Parser) ParseVarList(list *array.Array, ellipsis_ok bool) { P.Trace("VarList"); // assume a list of types // (a list of identifiers looks like a list of type names) i0 := list.Len(); for { list.Push(P.ParseVar(ellipsis_ok /* param list */ && i0 > 0)); if P.tok == Scanner.COMMA { P.Next(); } else { break; } } // if we had a list of identifiers, it must be followed by a type typ := P.TryType(); if typ == nil && P.tok == Scanner.ELLIPSIS { typ = AST.NewType(P.pos, AST.ELLIPSIS); P.Next(); } if ellipsis_ok /* param list */ && i0 > 0 && typ == nil { // not the first parameter section; we must have a type P.Error(P.pos, "type expected"); typ = AST.BadType; } // convert the list into a list of (type) expressions if typ != nil { // all list entries must be identifiers // convert the type entries into identifiers for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); if t.Form == AST.TYPENAME && t.Expr.Tok == Scanner.IDENT { list.Set(i, t.Expr); } else { list.Set(i, AST.BadExpr); P.Error(t.Pos, "identifier expected"); } } // add type list.Push(AST.NewTypeExpr(typ)); } else { // all list entries are types // convert all type entries into type expressions for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); list.Set(i, AST.NewTypeExpr(t)); } } P.Ecart(); } func (P *Parser) ParseParameterList(ellipsis_ok bool) *array.Array { P.Trace("ParameterList"); list := array.New(0); P.ParseVarList(list, ellipsis_ok); for P.tok == Scanner.COMMA { P.Next(); P.ParseVarList(list, ellipsis_ok); } P.Ecart(); return list; } func (P *Parser) ParseParameters(ellipsis_ok bool) *AST.Type { P.Trace("Parameters"); t := AST.NewType(P.pos, AST.STRUCT); P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { t.List = P.ParseParameterList(ellipsis_ok); } t.End = P.pos; P.Expect(Scanner.RPAREN); P.Ecart(); return t; } func (P *Parser) ParseResultList() { P.Trace("ResultList"); P.ParseType(); for P.tok == Scanner.COMMA { P.Next(); P.ParseType(); } if P.tok != Scanner.RPAREN { P.ParseType(); } P.Ecart(); } func (P *Parser) ParseResult(ftyp *AST.Type) *AST.Type { P.Trace("Result"); var t *AST.Type; if P.tok == Scanner.LPAREN { t = P.ParseParameters(false); } else { typ := P.TryType(); if typ != nil { t = AST.NewType(P.pos, AST.STRUCT); t.List = array.New(0); t.List.Push(AST.NewTypeExpr(typ)); t.End = P.pos; } } P.Ecart(); return t; } // Function types // // (params) // (params) type // (params) (results) func (P *Parser) ParseFunctionType() *AST.Type { P.Trace("FunctionType"); P.OpenScope(); P.scope_lev++; t := AST.NewType(P.pos, AST.FUNCTION); t.Scope = P.top_scope; t.List = P.ParseParameters(true).List; // TODO find better solution t.End = P.pos; t.Elt = P.ParseResult(t); P.scope_lev--; P.CloseScope(); P.Ecart(); return t; } func (P *Parser) ParseMethodSpec(list *array.Array) { P.Trace("MethodDecl"); list.Push(P.ParseIdentList()); t := AST.BadType; if P.sixg { t = P.ParseType(); } else { t = P.ParseFunctionType(); } list.Push(AST.NewTypeExpr(t)); P.Ecart(); } func (P *Parser) ParseInterfaceType() *AST.Type { P.Trace("InterfaceType"); t := AST.NewType(P.pos, AST.INTERFACE); P.Expect(Scanner.INTERFACE); if P.tok == Scanner.LBRACE { P.Next(); P.OpenScope(); P.scope_lev++; t.List = array.New(0); for P.tok == Scanner.IDENT { P.ParseMethodSpec(t.List); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } t.End = P.pos; P.scope_lev--; P.CloseScope(); P.Expect(Scanner.RBRACE); } P.Ecart(); return t; } func (P *Parser) ParseMapType() *AST.Type { P.Trace("MapType"); t := AST.NewType(P.pos, AST.MAP); P.Expect(Scanner.MAP); P.Expect(Scanner.LBRACK); t.Key = P.ParseVarType(); P.Expect(Scanner.RBRACK); t.Elt = P.ParseVarType(); P.Ecart(); return t; } func (P *Parser) ParseOperand() *AST.Expr func (P *Parser) ParseStructType() *AST.Type { P.Trace("StructType"); t := AST.NewType(P.pos, AST.STRUCT); P.Expect(Scanner.STRUCT); if P.tok == Scanner.LBRACE { P.Next(); t.List = array.New(0); t.Scope = AST.NewScope(nil); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.ParseVarList(t.List, false); if P.tok == Scanner.STRING { // ParseOperand takes care of string concatenation t.List.Push(P.ParseOperand()); } if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } P.OptSemicolon(); t.End = P.pos; P.Expect(Scanner.RBRACE); // enter fields into struct scope for i, n := 0, t.List.Len(); i < n; i++ { x := t.List.At(i).(*AST.Expr); if x.Tok == Scanner.IDENT { P.DeclareInScope(t.Scope, x, AST.FIELD, nil); } } } P.Ecart(); return t; } func (P *Parser) ParsePointerType() *AST.Type { P.Trace("PointerType"); t := AST.NewType(P.pos, AST.POINTER); P.Expect(Scanner.MUL); t.Elt = P.ParseType(); P.Ecart(); return t; } func (P *Parser) TryType() *AST.Type { P.Trace("Type (try)"); t := AST.BadType; switch P.tok { case Scanner.IDENT: t = P.ParseTypeName(); case Scanner.LBRACK: t = P.ParseArrayType(); case Scanner.CHAN, Scanner.ARROW: t = P.ParseChannelType(); case Scanner.INTERFACE: t = P.ParseInterfaceType(); case Scanner.LPAREN: t = P.ParseFunctionType(); case Scanner.MAP: t = P.ParseMapType(); case Scanner.STRUCT: t = P.ParseStructType(); case Scanner.MUL: t = P.ParsePointerType(); default: t = nil; // no type found } P.Ecart(); return t; } // ---------------------------------------------------------------------------- // Blocks func (P *Parser) ParseStatementList(list *array.Array) { P.Trace("StatementList"); for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { s := P.ParseStatement(); if s != nil { // not the empty statement list.Push(s); } if P.tok == Scanner.SEMICOLON { P.Next(); } else if P.opt_semi { P.opt_semi = false; // "consume" optional semicolon } else { break; } } // Try to provide a good error message if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.Error(P.pos, "expected end of statement list (semicolon missing?)"); } P.Ecart(); } func (P *Parser) ParseBlock(ftyp *AST.Type, tok int) *AST.Block { P.Trace("Block"); b := AST.NewBlock(P.pos, tok); P.Expect(tok); P.OpenScope(); // enter recv and parameters into function scope if ftyp != nil { assert(ftyp.Form == AST.FUNCTION); if ftyp.Key != nil { } if ftyp.List != nil { for i, n := 0, ftyp.List.Len(); i < n; i++ { x := ftyp.List.At(i).(*AST.Expr); if x.Tok == Scanner.IDENT { P.DeclareInScope(P.top_scope, x, AST.VAR, nil); } } } } P.ParseStatementList(b.List); P.CloseScope(); if tok == Scanner.LBRACE { b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; } P.Ecart(); return b; } // ---------------------------------------------------------------------------- // Expressions func (P *Parser) ParseExpressionList() *AST.Expr { P.Trace("ExpressionList"); x := P.ParseExpression(1); for first := true; P.tok == Scanner.COMMA; { pos := P.pos; P.Next(); y := P.ParseExpression(1); if first { x = P.NewExpr(pos, Scanner.COMMA, x, y); first = false; } else { x.Y = P.NewExpr(pos, Scanner.COMMA, x.Y, y); } } P.Ecart(); return x; } func (P *Parser) ParseFunctionLit() *AST.Expr { P.Trace("FunctionLit"); f := AST.NewObject(P.pos, AST.FUNC, ""); P.Expect(Scanner.FUNC); f.Typ = P.ParseFunctionType(); P.expr_lev++; P.scope_lev++; f.Body = P.ParseBlock(f.Typ, Scanner.LBRACE); P.scope_lev--; P.expr_lev--; P.Ecart(); return AST.NewLit(Scanner.FUNC, f); } func (P *Parser) ParseOperand() *AST.Expr { P.Trace("Operand"); x := AST.BadExpr; switch P.tok { case Scanner.IDENT: x = P.ParseIdent(P.top_scope); case Scanner.LPAREN: // TODO we could have a function type here as in: new(()) // (currently not working) P.Next(); P.expr_lev++; x = P.ParseExpression(1); P.expr_lev--; P.Expect(Scanner.RPAREN); case Scanner.INT, Scanner.FLOAT, Scanner.STRING: val := AST.NewObject(P.pos, AST.NONE, P.val); x = AST.NewLit(P.tok, val); P.Next(); if x.Tok == Scanner.STRING { // TODO should remember the list instead of // concatenate the strings here for ; P.tok == Scanner.STRING; P.Next() { x.Obj.Ident += P.val; } } case Scanner.FUNC: x = P.ParseFunctionLit(); default: t := P.TryType(); if t != nil { x = AST.NewTypeExpr(t); } else { P.Error(P.pos, "operand expected"); P.Next(); // make progress } } P.Ecart(); return x; } func (P *Parser) ParseSelectorOrTypeGuard(x *AST.Expr) *AST.Expr { P.Trace("SelectorOrTypeGuard"); x = P.NewExpr(P.pos, Scanner.PERIOD, x, nil); P.Expect(Scanner.PERIOD); if P.tok == Scanner.IDENT { // TODO should always guarantee x.Typ != nil var scope *AST.Scope; if x.X.Typ != nil { scope = x.X.Typ.Scope; } x.Y = P.ParseIdent(scope); x.Typ = x.Y.Obj.Typ; } else { P.Expect(Scanner.LPAREN); x.Y = AST.NewTypeExpr(P.ParseType()); x.Typ = x.Y.Typ; P.Expect(Scanner.RPAREN); } P.Ecart(); return x; } func (P *Parser) ParseIndex(x *AST.Expr) *AST.Expr { P.Trace("IndexOrSlice"); pos := P.pos; P.Expect(Scanner.LBRACK); P.expr_lev++; i := P.ParseExpression(0); P.expr_lev--; P.Expect(Scanner.RBRACK); P.Ecart(); return P.NewExpr(pos, Scanner.LBRACK, x, i); } func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr func (P *Parser) ParseCall(x0 *AST.Expr) *AST.Expr { P.Trace("Call"); x := P.NewExpr(P.pos, Scanner.LPAREN, x0, nil); P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { P.expr_lev++; var t *AST.Type; if x0.Tok == Scanner.IDENT && (x0.Obj.Ident == "new" || x0.Obj.Ident == "make") { // heuristic: assume it's a new(T) or make(T, ...) call, try to parse a type t = P.TryType(); } if t != nil { // we found a type x.Y = AST.NewTypeExpr(t); if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); y := P.ParseExpressionList(); // create list manually because NewExpr checks for type expressions z := AST.NewExpr(pos, Scanner.COMMA, nil, y); z.X = x.Y; x.Y = z; } } else { // normal argument list x.Y = P.ParseExpressionList(); } P.expr_lev--; } P.Expect(Scanner.RPAREN); P.Ecart(); return x; } func (P *Parser) ParseCompositeElements() *AST.Expr { x := P.ParseExpression(0); if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); // first element determines mode singles := true; if x.Tok == Scanner.COLON { singles = false; } var last *AST.Expr; for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { y := P.ParseExpression(0); if singles { if y.Tok == Scanner.COLON { P.Error(y.X.Pos, "single value expected; found pair"); } } else { if y.Tok != Scanner.COLON { P.Error(y.Pos, "key:value pair expected; found single value"); } } if last == nil { x = P.NewExpr(pos, Scanner.COMMA, x, y); last = x; } else { last.Y = P.NewExpr(pos, Scanner.COMMA, last.Y, y); last = last.Y; } if P.tok == Scanner.COMMA { pos = P.pos; P.Next(); } else { break; } } } return x; } func (P *Parser) ParseCompositeLit(t *AST.Type) *AST.Expr { P.Trace("CompositeLit"); x := P.NewExpr(P.pos, Scanner.LBRACE, nil, nil); x.Obj = AST.NewObject(t.Pos, AST.TYPE, ""); x.Obj.Typ = t; P.Expect(Scanner.LBRACE); if P.tok != Scanner.RBRACE { x.Y = P.ParseCompositeElements(); } P.Expect(Scanner.RBRACE); P.Ecart(); return x; } func (P *Parser) ParsePrimaryExpr() *AST.Expr { P.Trace("PrimaryExpr"); x := P.ParseOperand(); for { switch P.tok { case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x); case Scanner.LBRACK: x = P.ParseIndex(x); case Scanner.LPAREN: x = P.ParseCall(x); case Scanner.LBRACE: // assume a composite literal only if x could be a type // and if we are not inside a control clause (expr_lev >= 0) // (composites inside control clauses must be parenthesized) var t *AST.Type; if P.expr_lev >= 0 { t = exprType(x); } if t != nil { x = P.ParseCompositeLit(t); } else { goto exit; } default: goto exit; } } exit: P.Ecart(); return x; } func (P *Parser) ParseUnaryExpr() *AST.Expr { P.Trace("UnaryExpr"); x := AST.BadExpr; switch P.tok { case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND: pos, tok := P.pos, P.tok; P.Next(); y := P.ParseUnaryExpr(); if tok == Scanner.MUL && y.Tok == Scanner.TYPE { // pointer type t := AST.NewType(pos, AST.POINTER); t.Elt = y.Obj.Typ; x = AST.NewTypeExpr(t); } else { x = P.NewExpr(pos, tok, nil, y); } default: x = P.ParsePrimaryExpr(); } P.Ecart(); return x; } func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr { P.Trace("BinaryExpr"); x := P.ParseUnaryExpr(); for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- { for Scanner.Precedence(P.tok) == prec { pos, tok := P.pos, P.tok; P.Next(); y := P.ParseBinaryExpr(prec + 1); x = P.NewExpr(pos, tok, x, y); } } P.Ecart(); return x; } func (P *Parser) ParseExpression(prec int) *AST.Expr { P.Trace("Expression"); indent := P.indent; if prec < 0 { panic("precedence must be >= 0"); } x := P.NoType(P.ParseBinaryExpr(prec)); if indent != P.indent { panic("imbalanced tracing code (Expression)"); } P.Ecart(); return x; } // ---------------------------------------------------------------------------- // Statements func (P *Parser) ParseSimpleStat(range_ok bool) *AST.Stat { P.Trace("SimpleStat"); s := AST.BadStat; x := P.ParseExpressionList(); is_range := false; if range_ok && P.tok == Scanner.COLON { pos := P.pos; P.Next(); y := P.ParseExpression(1); if x.Len() == 1 { x = P.NewExpr(pos, Scanner.COLON, x, y); is_range = true; } else { P.Error(pos, "expected initialization, found ':'"); } } switch P.tok { case Scanner.COLON: // label declaration s = AST.NewStat(P.pos, Scanner.COLON); s.Expr = x; if x.Len() != 1 { P.Error(x.Pos, "illegal label declaration"); } P.Next(); // consume ":" P.opt_semi = true; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: // declaration/assignment pos, tok := P.pos, P.tok; P.Next(); y := AST.BadExpr; if P.tok == Scanner.RANGE { range_pos := P.pos; P.Next(); y = P.ParseExpression(1); y = P.NewExpr(range_pos, Scanner.RANGE, nil, y); if tok != Scanner.DEFINE && tok != Scanner.ASSIGN { P.Error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'"); } } else { y = P.ParseExpressionList(); if is_range { P.Error(y.Pos, "expected 'range', found expression"); } if xl, yl := x.Len(), y.Len(); xl > 1 && yl > 1 && xl != yl { P.Error(x.Pos, "arity of lhs doesn't match rhs"); } } s = AST.NewStat(x.Pos, Scanner.EXPRSTAT); s.Expr = AST.NewExpr(pos, tok, x, y); case Scanner.RANGE: pos := P.pos; P.Next(); y := P.ParseExpression(1); y = P.NewExpr(pos, Scanner.RANGE, nil, y); s = AST.NewStat(x.Pos, Scanner.EXPRSTAT); s.Expr = AST.NewExpr(pos, Scanner.DEFINE, x, y); default: var pos, tok int; if P.tok == Scanner.INC || P.tok == Scanner.DEC { pos, tok = P.pos, P.tok; P.Next(); } else { pos, tok = x.Pos, Scanner.EXPRSTAT; } s = AST.NewStat(pos, tok); s.Expr = x; if x.Len() != 1 { P.Error(x.Pos, "only one expression allowed"); } } P.Ecart(); return s; } func (P *Parser) ParseInvocationStat(keyword int) *AST.Stat { P.Trace("InvocationStat"); s := AST.NewStat(P.pos, keyword); P.Expect(keyword); s.Expr = P.ParseExpression(1); P.Ecart(); return s; } func (P *Parser) ParseReturnStat() *AST.Stat { P.Trace("ReturnStat"); s := AST.NewStat(P.pos, Scanner.RETURN); P.Expect(Scanner.RETURN); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { s.Expr = P.ParseExpressionList(); } P.Ecart(); return s; } func (P *Parser) ParseControlFlowStat(tok int) *AST.Stat { P.Trace("ControlFlowStat"); s := AST.NewStat(P.pos, tok); P.Expect(tok); if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT { s.Expr = P.ParseIdent(P.top_scope); } P.Ecart(); return s; } func (P *Parser) ParseControlClause(keyword int) *AST.Stat { P.Trace("ControlClause"); s := AST.NewStat(P.pos, keyword); P.Expect(keyword); if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = -1; if P.tok != Scanner.SEMICOLON { s.Init = P.ParseSimpleStat(keyword == Scanner.FOR); // TODO check for range clause and exit if found } if P.tok == Scanner.SEMICOLON { P.Next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { s.Expr = P.ParseExpression(1); } if keyword == Scanner.FOR { P.Expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { s.Post = P.ParseSimpleStat(false); } } } else { if s.Init != nil { // guard in case of errors s.Expr, s.Init = s.Init.Expr, nil; } } P.expr_lev = prev_lev; } P.Ecart(); return s; } func (P *Parser) ParseIfStat() *AST.Stat { P.Trace("IfStat"); P.OpenScope(); s := P.ParseControlClause(Scanner.IF); s.Body = P.ParseBlock(nil, Scanner.LBRACE); if P.tok == Scanner.ELSE { P.Next(); s1 := AST.BadStat; if P.tok == Scanner.IF || P.tok == Scanner.LBRACE { s1 = P.ParseStatement(); } else if P.sixg { s1 = P.ParseStatement(); if s1 != nil { // not the empty statement assert(s1.Tok != Scanner.LBRACE); // wrap in a block since we don't have one b := AST.NewStat(s1.Pos, Scanner.LBRACE); b.Body = AST.NewBlock(s1.Pos, Scanner.LBRACE); b.Body.List.Push(s1); s1 = b; } } else { P.Error(P.pos, "'if' or '{' expected - illegal 'else' branch"); } s.Post = s1; } P.CloseScope(); P.Ecart(); return s; } func (P *Parser) ParseForStat() *AST.Stat { P.Trace("ForStat"); P.OpenScope(); s := P.ParseControlClause(Scanner.FOR); s.Body = P.ParseBlock(nil, Scanner.LBRACE); P.CloseScope(); P.Ecart(); return s; } func (P *Parser) ParseSwitchCase() *AST.Stat { P.Trace("SwitchCase"); s := AST.NewStat(P.pos, P.tok); if P.tok == Scanner.CASE { P.Next(); s.Expr = P.ParseExpressionList(); } else { P.Expect(Scanner.DEFAULT); } P.Ecart(); return s; } func (P *Parser) ParseCaseClause() *AST.Stat { P.Trace("CaseClause"); s := P.ParseSwitchCase(); s.Body = P.ParseBlock(nil, Scanner.COLON); P.Ecart(); return s; } func (P *Parser) ParseSwitchStat() *AST.Stat { P.Trace("SwitchStat"); P.OpenScope(); s := P.ParseControlClause(Scanner.SWITCH); b := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { b.List.Push(P.ParseCaseClause()); } b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; P.CloseScope(); s.Body = b; P.Ecart(); return s; } func (P *Parser) ParseCommCase() *AST.Stat { P.Trace("CommCase"); s := AST.NewStat(P.pos, P.tok); if P.tok == Scanner.CASE { P.Next(); x := P.ParseExpression(1); if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE { pos, tok := P.pos, P.tok; P.Next(); if P.tok == Scanner.ARROW { y := P.ParseExpression(1); x = AST.NewExpr(pos, tok, x, y); } else { P.Expect(Scanner.ARROW); // use Expect() error handling } } s.Expr = x; } else { P.Expect(Scanner.DEFAULT); } P.Ecart(); return s; } func (P *Parser) ParseCommClause() *AST.Stat { P.Trace("CommClause"); s := P.ParseCommCase(); s.Body = P.ParseBlock(nil, Scanner.COLON); P.Ecart(); return s; } func (P *Parser) ParseSelectStat() *AST.Stat { P.Trace("SelectStat"); s := AST.NewStat(P.pos, Scanner.SELECT); P.Expect(Scanner.SELECT); b := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { b.List.Push(P.ParseCommClause()); } b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; s.Body = b; P.Ecart(); return s; } func (P *Parser) ParseStatement() *AST.Stat { P.Trace("Statement"); indent := P.indent; s := AST.BadStat; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: s = AST.NewStat(P.pos, P.tok); s.Decl = P.ParseDeclaration(); case Scanner.FUNC: // for now we do not allow local function declarations, // instead we assume this starts a function literal fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary s = P.ParseSimpleStat(false); case Scanner.GO, Scanner.DEFER: s = P.ParseInvocationStat(P.tok); case Scanner.RETURN: s = P.ParseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH: s = P.ParseControlFlowStat(P.tok); case Scanner.LBRACE: s = AST.NewStat(P.pos, Scanner.LBRACE); s.Body = P.ParseBlock(nil, Scanner.LBRACE); case Scanner.IF: s = P.ParseIfStat(); case Scanner.FOR: s = P.ParseForStat(); case Scanner.SWITCH: s = P.ParseSwitchStat(); case Scanner.SELECT: s = P.ParseSelectStat(); default: // empty statement s = nil; } if indent != P.indent { panic("imbalanced tracing code (Statement)"); } P.Ecart(); return s; } // ---------------------------------------------------------------------------- // Declarations func (P *Parser) ParseImportSpec(d *AST.Decl) { P.Trace("ImportSpec"); if P.tok == Scanner.PERIOD { P.Error(P.pos, `"import ." not yet handled properly`); P.Next(); } else if P.tok == Scanner.IDENT { d.Ident = P.ParseIdent(nil); } if P.tok == Scanner.STRING { // TODO eventually the scanner should strip the quotes val := AST.NewObject(P.pos, AST.NONE, P.val); d.Val = AST.NewLit(Scanner.STRING, val); P.Next(); } else { P.Expect(Scanner.STRING); // use Expect() error handling } P.Ecart(); } func (P *Parser) ParseConstSpec(d *AST.Decl) { P.Trace("ConstSpec"); d.Ident = P.ParseIdentList(); d.Typ = P.TryType(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } P.Ecart(); } func (P *Parser) ParseTypeSpec(d *AST.Decl) { P.Trace("TypeSpec"); d.Ident = P.ParseIdent(nil); d.Typ = P.ParseType(); P.opt_semi = true; P.Ecart(); } func (P *Parser) ParseVarSpec(d *AST.Decl) { P.Trace("VarSpec"); d.Ident = P.ParseIdentList(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } else { d.Typ = P.ParseVarType(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } } P.Ecart(); } func (P *Parser) ParseSpec(d *AST.Decl) { kind := AST.NONE; switch d.Tok { case Scanner.IMPORT: P.ParseImportSpec(d); kind = AST.PACKAGE; case Scanner.CONST: P.ParseConstSpec(d); kind = AST.CONST; case Scanner.TYPE: P.ParseTypeSpec(d); kind = AST.TYPE; case Scanner.VAR: P.ParseVarSpec(d); kind = AST.VAR; default: unreachable(); } // semantic checks if d.Tok == Scanner.IMPORT { if d.Ident != nil { P.Declare(d.Ident, kind, nil); } } else { P.Declare(d.Ident, kind, d.Typ); if d.Val != nil { // initialization/assignment llen := d.Ident.Len(); rlen := d.Val.Len(); if llen == rlen { // TODO } else if rlen == 1 { // TODO } else { if llen < rlen { P.Error(d.Val.At(llen).Pos, "more expressions than variables"); } else { P.Error(d.Ident.At(rlen).Pos, "more variables than expressions"); } } } else { // TODO } } } func (P *Parser) ParseDecl(keyword int) *AST.Decl { P.Trace("Decl"); d := AST.NewDecl(P.pos, keyword); P.Expect(keyword); if P.tok == Scanner.LPAREN { P.Next(); d.List = array.New(0); for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF { d1 := AST.NewDecl(P.pos, keyword); P.ParseSpec(d1); d.List.Push(d1); if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } d.End = P.pos; P.Expect(Scanner.RPAREN); P.opt_semi = true; } else { P.ParseSpec(d); } P.Ecart(); return d; } // Function declarations // // func ident (params) // func ident (params) type // func ident (params) (results) // func (recv) ident (params) // func (recv) ident (params) type // func (recv) ident (params) (results) func (P *Parser) ParseFunctionDecl() *AST.Decl { P.Trace("FunctionDecl"); d := AST.NewDecl(P.pos, Scanner.FUNC); P.Expect(Scanner.FUNC); var recv *AST.Type; if P.tok == Scanner.LPAREN { pos := P.pos; recv = P.ParseParameters(true); if recv.Nfields() != 1 { P.Error(pos, "must have exactly one receiver"); } } d.Ident = P.ParseIdent(nil); d.Typ = P.ParseFunctionType(); d.Typ.Key = recv; if P.tok == Scanner.LBRACE { f := AST.NewObject(d.Pos, AST.FUNC, d.Ident.Obj.Ident); f.Typ = d.Typ; f.Body = P.ParseBlock(d.Typ, Scanner.LBRACE); d.Val = AST.NewLit(Scanner.FUNC, f); } P.Ecart(); return d; } func (P *Parser) ParseDeclaration() *AST.Decl { P.Trace("Declaration"); indent := P.indent; d := AST.BadDecl; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: d = P.ParseDecl(P.tok); case Scanner.FUNC: d = P.ParseFunctionDecl(); default: P.Error(P.pos, "declaration expected"); P.Next(); // make progress } if indent != P.indent { panic("imbalanced tracing code (Declaration)"); } P.Ecart(); return d; } // ---------------------------------------------------------------------------- // Program func (P *Parser) ParseProgram() *AST.Program { P.Trace("Program"); P.OpenScope(); p := AST.NewProgram(P.pos); P.Expect(Scanner.PACKAGE); p.Ident = P.ParseIdent(nil); // package body { P.OpenScope(); p.Decls = array.New(0); for P.tok == Scanner.IMPORT { p.Decls.Push(P.ParseDecl(Scanner.IMPORT)); P.OptSemicolon(); } if !P.deps { for P.tok != Scanner.EOF { p.Decls.Push(P.ParseDeclaration()); P.OptSemicolon(); } } P.CloseScope(); } p.Comments = P.comments; P.CloseScope(); P.Ecart(); return p; }