// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Parser import ( "flag"; "fmt"; "vector"; Scanner "scanner"; AST "ast"; SymbolTable "symboltable"; ) type Parser struct { // Tracing/debugging trace, sixg, deps bool; indent uint; // Scanner scanner *Scanner.Scanner; comments *vector.Vector; // Scanner.Token pos int; // token source position tok int; // one token look-ahead val string; // token value (for IDENT, NUMBER, STRING only) // Non-syntactic parser control opt_semi bool; // true if semicolon is optional // Nesting levels expr_lev int; // 0 = control clause level, 1 = expr inside ()'s scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc. // Scopes top_scope *SymbolTable.Scope; }; // ---------------------------------------------------------------------------- // Elementary support func unimplemented() { panic("unimplemented"); } func unreachable() { panic("unreachable"); } func assert(pred bool) { if !pred { panic("assertion failed"); } } // ---------------------------------------------------------------------------- // Parsing support func (P *Parser) printIndent() { i := P.indent; // reduce printing time by a factor of 2 or more for ; i > 10; i -= 10 { fmt.Printf(". . . . . . . . . . "); } for ; i > 0; i-- { fmt.Printf(". "); } } func trace(P *Parser, msg string) *Parser { P.printIndent(); fmt.Printf("%s (\n", msg); P.indent++; return P; } func un/*trace*/(P *Parser) { P.indent--; P.printIndent(); fmt.Printf(")\n"); } func (P *Parser) next0() { P.pos, P.tok, P.val = P.scanner.Scan(); P.opt_semi = false; if P.trace { P.printIndent(); switch P.tok { case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING: fmt.Printf("[%d] %s = %s\n", P.pos, Scanner.TokenString(P.tok), P.val); case Scanner.LPAREN: // don't print '(' - screws up selection in terminal window fmt.Printf("[%d] LPAREN\n", P.pos); case Scanner.RPAREN: // don't print ')' - screws up selection in terminal window fmt.Printf("[%d] RPAREN\n", P.pos); default: fmt.Printf("[%d] %s\n", P.pos, Scanner.TokenString(P.tok)); } } } func (P *Parser) next() { for P.next0(); P.tok == Scanner.COMMENT; P.next0() { P.comments.Push(AST.NewComment(P.pos, P.val)); } } func (P *Parser) Open(trace, sixg, deps bool, scanner *Scanner.Scanner) { P.trace = trace; P.sixg = sixg; P.deps = deps; P.indent = 0; P.scanner = scanner; P.comments = vector.New(0); P.next(); P.expr_lev = 0; P.scope_lev = 0; } func (P *Parser) error(pos int, msg string) { P.scanner.Error(pos, msg); } func (P *Parser) expect(tok int) { if P.tok != tok { msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'"; switch P.tok { case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING: msg += " " + P.val; } P.error(P.pos, msg); } P.next(); // make progress in any case } func (P *Parser) OptSemicolon() { if P.tok == Scanner.SEMICOLON { P.next(); } } // ---------------------------------------------------------------------------- // Scopes func (P *Parser) openScope() { P.top_scope = SymbolTable.NewScope(P.top_scope); } func (P *Parser) closeScope() { P.top_scope = P.top_scope.Parent; } func (P *Parser) declareInScope(scope *SymbolTable.Scope, x AST.Expr, kind int, typ *AST.Type) { if P.scope_lev < 0 { panic("cannot declare objects in other packages"); } if ident, ok := x.(*AST.Ident); ok { // ignore bad exprs obj := ident.Obj; obj.Kind = kind; //TODO fix typ setup! //obj.Typ = typ; obj.Pnolev = P.scope_lev; switch { case scope.LookupLocal(obj.Ident) == nil: scope.Insert(obj); case kind == SymbolTable.TYPE: // possibly a forward declaration case kind == SymbolTable.FUNC: // possibly a forward declaration default: P.error(obj.Pos, `"` + obj.Ident + `" is declared already`); } } } // declare a comma-separated list of idents or a single ident. func (P *Parser) declare(x AST.Expr, kind int, typ *AST.Type) { for { p, ok := x.(*AST.BinaryExpr); if ok && p.Tok == Scanner.COMMA { P.declareInScope(P.top_scope, p.X, kind, typ); x = p.Y; } else { break; } } P.declareInScope(P.top_scope, x, kind, typ); } // ---------------------------------------------------------------------------- // AST support func exprType(x AST.Expr) *AST.Type { var typ *AST.Type; if t, is_type := x.(*AST.TypeLit); is_type { typ = t.Typ } else if t, is_ident := x.(*AST.Ident); is_ident { // assume a type name typ = AST.NewType(t.Pos(), AST.TYPENAME); typ.Expr = x; } else if t, is_selector := x.(*AST.Selector); is_selector && exprType(t.Sel) != nil { // possibly a qualified (type) identifier typ = AST.NewType(t.Pos(), AST.TYPENAME); typ.Expr = x; } return typ; } func (P *Parser) noType(x AST.Expr) AST.Expr { if x != nil { lit, ok := x.(*AST.TypeLit); if ok { P.error(lit.Typ.Pos, "expected expression, found type"); x = &AST.BasicLit(lit.Typ.Pos, Scanner.STRING, ""); } } return x; } func (P *Parser) newBinaryExpr(pos, tok int, x, y AST.Expr) *AST.BinaryExpr { return &AST.BinaryExpr(pos, tok, P.noType(x), P.noType(y)); } // ---------------------------------------------------------------------------- // Common productions func (P *Parser) tryType() *AST.Type; func (P *Parser) parseExpression(prec int) AST.Expr; func (P *Parser) parseStatement() AST.Stat; func (P *Parser) parseDeclaration() *AST.Decl; // If scope != nil, lookup identifier in scope. Otherwise create one. func (P *Parser) parseIdent(scope *SymbolTable.Scope) *AST.Ident { if P.trace { defer un(trace(P, "Ident")); } if P.tok == Scanner.IDENT { var obj *SymbolTable.Object; if scope != nil { obj = scope.Lookup(P.val); } if obj == nil { obj = SymbolTable.NewObject(P.pos, SymbolTable.NONE, P.val); } else { assert(obj.Kind != SymbolTable.NONE); } x := &AST.Ident(P.pos, obj); P.next(); return x; } P.expect(Scanner.IDENT); // use expect() error handling return &AST.Ident(P.pos, nil); } func (P *Parser) parseIdentList() AST.Expr { if P.trace { defer un(trace(P, "IdentList")); } var last *AST.BinaryExpr; var x AST.Expr = P.parseIdent(nil); for P.tok == Scanner.COMMA { pos := P.pos; P.next(); y := P.parseIdent(nil); if last == nil { last = P.newBinaryExpr(pos, Scanner.COMMA, x, y); x = last; } else { last.Y = P.newBinaryExpr(pos, Scanner.COMMA, last.Y, y); last = last.Y.(*AST.BinaryExpr); } } return x; } // ---------------------------------------------------------------------------- // Types func (P *Parser) parseType() *AST.Type { if P.trace { defer un(trace(P, "Type")); } t := P.tryType(); if t == nil { P.error(P.pos, "type expected"); t = AST.BadType; } return t; } func (P *Parser) parseVarType() *AST.Type { if P.trace { defer un(trace(P, "VarType")); } return P.parseType(); } func (P *Parser) parseQualifiedIdent() AST.Expr { if P.trace { defer un(trace(P, "QualifiedIdent")); } var x AST.Expr = P.parseIdent(P.top_scope); for P.tok == Scanner.PERIOD { pos := P.pos; P.next(); y := P.parseIdent(nil); x = &AST.Selector(pos, x, y); } return x; } func (P *Parser) parseTypeName() *AST.Type { if P.trace { defer un(trace(P, "TypeName")); } t := AST.NewType(P.pos, AST.TYPENAME); t.Expr = P.parseQualifiedIdent(); return t; } func (P *Parser) parseArrayType() *AST.Type { if P.trace { defer un(trace(P, "ArrayType")); } t := AST.NewType(P.pos, AST.ARRAY); P.expect(Scanner.LBRACK); if P.tok == Scanner.ELLIPSIS { t.Expr = P.newBinaryExpr(P.pos, Scanner.ELLIPSIS, nil, nil); P.next(); } else if P.tok != Scanner.RBRACK { t.Expr = P.parseExpression(1); } P.expect(Scanner.RBRACK); t.Elt = P.parseType(); return t; } func (P *Parser) parseChannelType() *AST.Type { if P.trace { defer un(trace(P, "ChannelType")); } t := AST.NewType(P.pos, AST.CHANNEL); t.Mode = AST.FULL; if P.tok == Scanner.CHAN { P.next(); if P.tok == Scanner.ARROW { P.next(); t.Mode = AST.SEND; } } else { P.expect(Scanner.ARROW); P.expect(Scanner.CHAN); t.Mode = AST.RECV; } t.Elt = P.parseVarType(); return t; } func (P *Parser) parseVar(expect_ident bool) *AST.Type { t := AST.BadType; if expect_ident { x := P.parseIdent(nil); t = AST.NewType(x.Pos(), AST.TYPENAME); t.Expr = x; } else if P.tok == Scanner.ELLIPSIS { t = AST.NewType(P.pos, AST.ELLIPSIS); P.next(); } else { t = P.parseType(); } return t; } func (P *Parser) parseVarList(list *vector.Vector, ellipsis_ok bool) { if P.trace { defer un(trace(P, "VarList")); } // assume a list of types // (a list of identifiers looks like a list of type names) i0 := list.Len(); for { list.Push(P.parseVar(ellipsis_ok /* param list */ && i0 > 0)); if P.tok == Scanner.COMMA { P.next(); } else { break; } } // if we had a list of identifiers, it must be followed by a type typ := P.tryType(); if typ == nil && P.tok == Scanner.ELLIPSIS { typ = AST.NewType(P.pos, AST.ELLIPSIS); P.next(); } if ellipsis_ok /* param list */ && i0 > 0 && typ == nil { // not the first parameter section; we must have a type P.error(P.pos, "type expected"); typ = AST.BadType; } // convert the list into a list of (type) expressions if typ != nil { // all list entries must be identifiers // convert the type entries into identifiers for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); if t.Form == AST.TYPENAME { if ident, ok := t.Expr.(*AST.Ident); ok { list.Set(i, ident); continue; } } list.Set(i, &AST.BadExpr(0)); P.error(t.Pos, "identifier expected"); } // add type list.Push(&AST.TypeLit(typ)); } else { // all list entries are types // convert all type entries into type expressions for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); list.Set(i, &AST.TypeLit(t)); } } } func (P *Parser) parseParameterList(ellipsis_ok bool) *vector.Vector { if P.trace { defer un(trace(P, "ParameterList")); } list := vector.New(0); P.parseVarList(list, ellipsis_ok); for P.tok == Scanner.COMMA { P.next(); P.parseVarList(list, ellipsis_ok); } return list; } func (P *Parser) parseParameters(ellipsis_ok bool) *AST.Type { if P.trace { defer un(trace(P, "Parameters")); } t := AST.NewType(P.pos, AST.STRUCT); P.expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { t.List = P.parseParameterList(ellipsis_ok); } t.End = P.pos; P.expect(Scanner.RPAREN); return t; } func (P *Parser) parseResultList() { if P.trace { defer un(trace(P, "ResultList")); } P.parseType(); for P.tok == Scanner.COMMA { P.next(); P.parseType(); } if P.tok != Scanner.RPAREN { P.parseType(); } } func (P *Parser) parseResult(ftyp *AST.Type) *AST.Type { if P.trace { defer un(trace(P, "Result")); } var t *AST.Type; if P.tok == Scanner.LPAREN { t = P.parseParameters(false); } else if P.tok != Scanner.FUNC { typ := P.tryType(); if typ != nil { t = AST.NewType(P.pos, AST.STRUCT); t.List = vector.New(0); t.List.Push(&AST.TypeLit(typ)); t.End = P.pos; } } return t; } // Function types // // (params) // (params) type // (params) (results) func (P *Parser) parseSignature() *AST.Type { if P.trace { defer un(trace(P, "Signature")); } P.openScope(); P.scope_lev++; t := AST.NewType(P.pos, AST.FUNCTION); t.Scope = P.top_scope; t.List = P.parseParameters(true).List; // TODO find better solution t.End = P.pos; t.Elt = P.parseResult(t); P.scope_lev--; P.closeScope(); return t; } func (P *Parser) parseFunctionType() *AST.Type { if P.trace { defer un(trace(P, "FunctionType")); } P.expect(Scanner.FUNC); return P.parseSignature(); } func (P *Parser) parseMethodSpec(list *vector.Vector) { if P.trace { defer un(trace(P, "MethodDecl")); } list.Push(P.parseIdentList()); t := P.parseSignature(); list.Push(&AST.TypeLit(t)); } func (P *Parser) parseInterfaceType() *AST.Type { if P.trace { defer un(trace(P, "InterfaceType")); } t := AST.NewType(P.pos, AST.INTERFACE); P.expect(Scanner.INTERFACE); if P.tok == Scanner.LBRACE { P.next(); P.openScope(); P.scope_lev++; t.List = vector.New(0); for P.tok == Scanner.IDENT { P.parseMethodSpec(t.List); if P.tok != Scanner.RBRACE { P.expect(Scanner.SEMICOLON); } } t.End = P.pos; P.scope_lev--; P.closeScope(); P.expect(Scanner.RBRACE); } return t; } func (P *Parser) parseMapType() *AST.Type { if P.trace { defer un(trace(P, "MapType")); } t := AST.NewType(P.pos, AST.MAP); P.expect(Scanner.MAP); P.expect(Scanner.LBRACK); t.Key = P.parseVarType(); P.expect(Scanner.RBRACK); t.Elt = P.parseVarType(); return t; } func (P *Parser) parseOperand() AST.Expr func (P *Parser) parseStructType() *AST.Type { if P.trace { defer un(trace(P, "StructType")); } t := AST.NewType(P.pos, AST.STRUCT); P.expect(Scanner.STRUCT); if P.tok == Scanner.LBRACE { P.next(); t.List = vector.New(0); t.Scope = SymbolTable.NewScope(nil); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.parseVarList(t.List, false); if P.tok == Scanner.STRING { // ParseOperand takes care of string concatenation t.List.Push(P.parseOperand()); } if P.tok == Scanner.SEMICOLON { P.next(); } else { break; } } P.OptSemicolon(); t.End = P.pos; P.expect(Scanner.RBRACE); // enter fields into struct scope for i, n := 0, t.List.Len(); i < n; i++ { if x, ok := t.List.At(i).(*AST.Ident); ok { P.declareInScope(t.Scope, x, SymbolTable.FIELD, nil); } } } return t; } func (P *Parser) parsePointerType() *AST.Type { if P.trace { defer un(trace(P, "PointerType")); } t := AST.NewType(P.pos, AST.POINTER); P.expect(Scanner.MUL); t.Elt = P.parseType(); return t; } func (P *Parser) tryType() *AST.Type { if P.trace { defer un(trace(P, "Type (try)")); } t := AST.BadType; switch P.tok { case Scanner.IDENT: t = P.parseTypeName(); case Scanner.LBRACK: t = P.parseArrayType(); case Scanner.CHAN, Scanner.ARROW: t = P.parseChannelType(); case Scanner.INTERFACE: t = P.parseInterfaceType(); case Scanner.FUNC: t = P.parseFunctionType(); case Scanner.MAP: t = P.parseMapType(); case Scanner.STRUCT: t = P.parseStructType(); case Scanner.MUL: t = P.parsePointerType(); default: t = nil; // no type found } return t; } // ---------------------------------------------------------------------------- // Blocks func (P *Parser) parseStatementList(list *vector.Vector) { if P.trace { defer un(trace(P, "StatementList")); } expect_semi := false; for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { if expect_semi { P.expect(Scanner.SEMICOLON); expect_semi = false; } list.Push(P.parseStatement()); if P.tok == Scanner.SEMICOLON { P.next(); } else if P.opt_semi { P.opt_semi = false; // "consume" optional semicolon } else { expect_semi = true; } } } func (P *Parser) parseBlock(ftyp *AST.Type, tok int) *AST.Block { if P.trace { defer un(trace(P, "Block")); } b := AST.NewBlock(P.pos, tok); P.expect(tok); P.openScope(); // enter recv and parameters into function scope if ftyp != nil { assert(ftyp.Form == AST.FUNCTION); if ftyp.Key != nil { } if ftyp.List != nil { for i, n := 0, ftyp.List.Len(); i < n; i++ { if x, ok := ftyp.List.At(i).(*AST.Ident); ok { P.declareInScope(P.top_scope, x, SymbolTable.VAR, nil); } } } } P.parseStatementList(b.List); P.closeScope(); if tok == Scanner.LBRACE { b.End = P.pos; P.expect(Scanner.RBRACE); P.opt_semi = true; } return b; } // ---------------------------------------------------------------------------- // Expressions func (P *Parser) parseExpressionList() AST.Expr { if P.trace { defer un(trace(P, "ExpressionList")); } x := P.parseExpression(1); for first := true; P.tok == Scanner.COMMA; { pos := P.pos; P.next(); y := P.parseExpression(1); if first { x = P.newBinaryExpr(pos, Scanner.COMMA, x, y); first = false; } else { x.(*AST.BinaryExpr).Y = P.newBinaryExpr(pos, Scanner.COMMA, x.(*AST.BinaryExpr).Y, y); } } return x; } func (P *Parser) parseFunctionLit() AST.Expr { if P.trace { defer un(trace(P, "FunctionLit")); } pos := P.pos; P.expect(Scanner.FUNC); typ := P.parseSignature(); P.expr_lev++; P.scope_lev++; body := P.parseBlock(typ, Scanner.LBRACE); P.scope_lev--; P.expr_lev--; return &AST.FunctionLit(pos, typ, body); } func (P *Parser) parseOperand() AST.Expr { if P.trace { defer un(trace(P, "Operand")); } switch P.tok { case Scanner.IDENT: return P.parseIdent(P.top_scope); case Scanner.LPAREN: P.next(); P.expr_lev++; x := P.parseExpression(1); P.expr_lev--; P.expect(Scanner.RPAREN); return x; case Scanner.INT, Scanner.FLOAT, Scanner.STRING: x := &AST.BasicLit(P.pos, P.tok, P.val); P.next(); if x.Tok == Scanner.STRING { // TODO should remember the list instead of // concatenate the strings here for ; P.tok == Scanner.STRING; P.next() { x.Val += P.val; } } return x; case Scanner.FUNC: return P.parseFunctionLit(); default: t := P.tryType(); if t != nil { return &AST.TypeLit(t); } else { P.error(P.pos, "operand expected"); P.next(); // make progress } } return &AST.BadExpr(P.pos); } func (P *Parser) parseSelectorOrTypeGuard(x AST.Expr) AST.Expr { if P.trace { defer un(trace(P, "SelectorOrTypeGuard")); } pos := P.pos; P.expect(Scanner.PERIOD); if P.tok == Scanner.IDENT { x = &AST.Selector(pos, x, P.parseIdent(nil)); } else { P.expect(Scanner.LPAREN); x = &AST.TypeGuard(pos, x, P.parseType()); P.expect(Scanner.RPAREN); } return x; } func (P *Parser) parseIndex(x AST.Expr) AST.Expr { if P.trace { defer un(trace(P, "IndexOrSlice")); } pos := P.pos; P.expect(Scanner.LBRACK); P.expr_lev++; i := P.parseExpression(0); P.expr_lev--; P.expect(Scanner.RBRACK); return &AST.Index(pos, x, i); } func (P *Parser) parseBinaryExpr(prec1 int) AST.Expr func (P *Parser) parseCall(f AST.Expr) AST.Expr { if P.trace { defer un(trace(P, "Call")); } call := &AST.Call(P.pos, f, nil); P.expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { P.expr_lev++; var t *AST.Type; if x0, ok := f.(*AST.Ident); ok && (x0.Obj.Ident == "new" || x0.Obj.Ident == "make") { // heuristic: assume it's a new(T) or make(T, ...) call, try to parse a type t = P.tryType(); } if t != nil { // we found a type args := &AST.TypeLit(t); if P.tok == Scanner.COMMA { pos := P.pos; P.next(); y := P.parseExpressionList(); // create list manually because NewExpr checks for type expressions args := &AST.BinaryExpr(pos, Scanner.COMMA, args, y); } call.Args = args; } else { // normal argument list call.Args = P.parseExpressionList(); } P.expr_lev--; } P.expect(Scanner.RPAREN); return call; } func (P *Parser) parseCompositeElements() AST.Expr { x := P.parseExpression(0); if P.tok == Scanner.COMMA { pos := P.pos; P.next(); // first element determines mode singles := true; if t, is_binary := x.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON { singles = false; } var last *AST.BinaryExpr; for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { y := P.parseExpression(0); if singles { if t, is_binary := y.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON { P.error(t.X.Pos(), "single value expected; found pair"); } } else { if t, is_binary := y.(*AST.BinaryExpr); !is_binary || t.Tok != Scanner.COLON { P.error(y.Pos(), "key:value pair expected; found single value"); } } if last == nil { last = P.newBinaryExpr(pos, Scanner.COMMA, x, y); x = last; } else { last.Y = P.newBinaryExpr(pos, Scanner.COMMA, last.Y, y); last = last.Y.(*AST.BinaryExpr); } if P.tok == Scanner.COMMA { pos = P.pos; P.next(); } else { break; } } } return x; } func (P *Parser) parseCompositeLit(t *AST.Type) AST.Expr { if P.trace { defer un(trace(P, "CompositeLit")); } pos := P.pos; P.expect(Scanner.LBRACE); var elts AST.Expr; if P.tok != Scanner.RBRACE { elts = P.parseCompositeElements(); } P.expect(Scanner.RBRACE); return &AST.CompositeLit(pos, t, elts); } func (P *Parser) parsePrimaryExpr() AST.Expr { if P.trace { defer un(trace(P, "PrimaryExpr")); } x := P.parseOperand(); for { switch P.tok { case Scanner.PERIOD: x = P.parseSelectorOrTypeGuard(x); case Scanner.LBRACK: x = P.parseIndex(x); case Scanner.LPAREN: x = P.parseCall(x); case Scanner.LBRACE: // assume a composite literal only if x could be a type // and if we are not inside a control clause (expr_lev >= 0) // (composites inside control clauses must be parenthesized) var t *AST.Type; if P.expr_lev >= 0 { t = exprType(x); } if t != nil { x = P.parseCompositeLit(t); } else { return x; } default: return x; } } unreachable(); return nil; } func (P *Parser) parseUnaryExpr() AST.Expr { if P.trace { defer un(trace(P, "UnaryExpr")); } switch P.tok { case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND: pos, tok := P.pos, P.tok; P.next(); y := P.parseUnaryExpr(); if lit, ok := y.(*AST.TypeLit); ok && tok == Scanner.MUL { // pointer type t := AST.NewType(pos, AST.POINTER); t.Elt = lit.Typ; return &AST.TypeLit(t); } else { return &AST.UnaryExpr(pos, tok, y); } } return P.parsePrimaryExpr(); } func (P *Parser) parseBinaryExpr(prec1 int) AST.Expr { if P.trace { defer un(trace(P, "BinaryExpr")); } x := P.parseUnaryExpr(); for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- { for Scanner.Precedence(P.tok) == prec { pos, tok := P.pos, P.tok; P.next(); y := P.parseBinaryExpr(prec + 1); x = P.newBinaryExpr(pos, tok, x, y); } } return x; } func (P *Parser) parseExpression(prec int) AST.Expr { if P.trace { defer un(trace(P, "Expression")); } if prec < 0 { panic("precedence must be >= 0"); } return P.noType(P.parseBinaryExpr(prec)); } // ---------------------------------------------------------------------------- // Statements func (P *Parser) parseSimpleStat(range_ok bool) AST.Stat { if P.trace { defer un(trace(P, "SimpleStat")); } x := P.parseExpressionList(); switch P.tok { case Scanner.COLON: // label declaration pos := P.pos; P.next(); // consume ":" P.opt_semi = true; if AST.ExprLen(x) == 1 { if label, is_ident := x.(*AST.Ident); is_ident { return &AST.LabelDecl(pos, label); } } P.error(x.Pos(), "illegal label declaration"); return nil; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: // declaration/assignment pos, tok := P.pos, P.tok; P.next(); var y AST.Expr; if range_ok && P.tok == Scanner.RANGE { range_pos := P.pos; P.next(); y = &AST.UnaryExpr(range_pos, Scanner.RANGE, P.parseExpression(1)); if tok != Scanner.DEFINE && tok != Scanner.ASSIGN { P.error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'"); } } else { y = P.parseExpressionList(); if xl, yl := AST.ExprLen(x), AST.ExprLen(y); xl > 1 && yl > 1 && xl != yl { P.error(x.Pos(), "arity of lhs doesn't match rhs"); } } // TODO changed ILLEGAL -> NONE return &AST.ExpressionStat(x.Pos(), Scanner.ILLEGAL, P.newBinaryExpr(pos, tok, x, y)); default: if AST.ExprLen(x) != 1 { P.error(x.Pos(), "only one expression allowed"); } if P.tok == Scanner.INC || P.tok == Scanner.DEC { s := &AST.ExpressionStat(P.pos, P.tok, x); P.next(); // consume "++" or "--" return s; } // TODO changed ILLEGAL -> NONE return &AST.ExpressionStat(x.Pos(), Scanner.ILLEGAL, x); } unreachable(); return nil; } func (P *Parser) parseInvocationStat(keyword int) *AST.ExpressionStat { if P.trace { defer un(trace(P, "InvocationStat")); } pos := P.pos; P.expect(keyword); return &AST.ExpressionStat(pos, keyword, P.parseExpression(1)); } func (P *Parser) parseReturnStat() *AST.ExpressionStat { if P.trace { defer un(trace(P, "ReturnStat")); } pos := P.pos; P.expect(Scanner.RETURN); var x AST.Expr; if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { x = P.parseExpressionList(); } return &AST.ExpressionStat(pos, Scanner.RETURN, x); } func (P *Parser) parseControlFlowStat(tok int) *AST.ControlFlowStat { if P.trace { defer un(trace(P, "ControlFlowStat")); } s := &AST.ControlFlowStat(P.pos, tok, nil); P.expect(tok); if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT { s.Label = P.parseIdent(P.top_scope); } return s; } func (P *Parser) parseControlClause(isForStat bool) (init AST.Stat, expr AST.Expr, post AST.Stat) { if P.trace { defer un(trace(P, "ControlClause")); } if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = -1; if P.tok != Scanner.SEMICOLON { init = P.parseSimpleStat(isForStat); // TODO check for range clause and exit if found } if P.tok == Scanner.SEMICOLON { P.next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { expr = P.parseExpression(1); } if isForStat { P.expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { post = P.parseSimpleStat(false); } } } else { if init != nil { // guard in case of errors if s, is_expr_stat := init.(*AST.ExpressionStat); is_expr_stat { expr, init = s.Expr, nil; } else { P.error(0, "illegal control clause"); } } } P.expr_lev = prev_lev; } return init, expr, post; } func (P *Parser) parseIfStat() *AST.IfStat { if P.trace { defer un(trace(P, "IfStat")); } P.openScope(); pos := P.pos; P.expect(Scanner.IF); init, cond, dummy := P.parseControlClause(false); body := P.parseBlock(nil, Scanner.LBRACE); var else_ AST.Stat; if P.tok == Scanner.ELSE { P.next(); if ok := P.tok == Scanner.IF || P.tok == Scanner.LBRACE; ok || P.sixg { else_ = P.parseStatement(); if !ok { // wrap in a block since we don't have one body := AST.NewBlock(0, Scanner.LBRACE); body.List.Push(else_); else_ = &AST.CompositeStat(body); } } else { P.error(P.pos, "'if' or '{' expected - illegal 'else' branch"); } } P.closeScope(); return &AST.IfStat(pos, init, cond, body, else_); } func (P *Parser) parseForStat() *AST.ForStat { if P.trace { defer un(trace(P, "ForStat")); } P.openScope(); pos := P.pos; P.expect(Scanner.FOR); init, cond, post := P.parseControlClause(true); body := P.parseBlock(nil, Scanner.LBRACE); P.closeScope(); return &AST.ForStat(pos, init, cond, post, body); } func (P *Parser) parseCaseClause() *AST.CaseClause { if P.trace { defer un(trace(P, "CaseClause")); } // SwitchCase pos := P.pos; var expr AST.Expr; if P.tok == Scanner.CASE { P.next(); expr = P.parseExpressionList(); } else { P.expect(Scanner.DEFAULT); } return &AST.CaseClause(pos, expr, P.parseBlock(nil, Scanner.COLON)); } func (P *Parser) parseSwitchStat() *AST.SwitchStat { if P.trace { defer un(trace(P, "SwitchStat")); } P.openScope(); pos := P.pos; P.expect(Scanner.SWITCH); init, tag, post := P.parseControlClause(false); body := AST.NewBlock(P.pos, Scanner.LBRACE); P.expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { body.List.Push(P.parseCaseClause()); } body.End = P.pos; P.expect(Scanner.RBRACE); P.opt_semi = true; P.closeScope(); return &AST.SwitchStat(pos, init, tag, body); } func (P *Parser) parseCommClause() *AST.CaseClause { if P.trace { defer un(trace(P, "CommClause")); } // CommCase pos := P.pos; var expr AST.Expr; if P.tok == Scanner.CASE { P.next(); x := P.parseExpression(1); if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE { pos, tok := P.pos, P.tok; P.next(); if P.tok == Scanner.ARROW { y := P.parseExpression(1); x = P.newBinaryExpr(pos, tok, x, y); } else { P.expect(Scanner.ARROW); // use expect() error handling } } expr = x; } else { P.expect(Scanner.DEFAULT); } return &AST.CaseClause(pos, expr, P.parseBlock(nil, Scanner.COLON)); } func (P *Parser) parseSelectStat() *AST.SelectStat { if P.trace { defer un(trace(P, "SelectStat")); } P.openScope(); pos := P.pos; P.expect(Scanner.SELECT); body := AST.NewBlock(P.pos, Scanner.LBRACE); P.expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { body.List.Push(P.parseCommClause()); } body.End = P.pos; P.expect(Scanner.RBRACE); P.opt_semi = true; P.closeScope(); return &AST.SelectStat(pos, body); } func (P *Parser) parseStatement() AST.Stat { if P.trace { defer un(trace(P, "Statement")); } switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: return &AST.DeclarationStat(P.parseDeclaration()); case Scanner.FUNC: // for now we do not allow local function declarations, // instead we assume this starts a function literal fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary return P.parseSimpleStat(false); case Scanner.GO, Scanner.DEFER: return P.parseInvocationStat(P.tok); case Scanner.RETURN: return P.parseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH: return P.parseControlFlowStat(P.tok); case Scanner.LBRACE: return &AST.CompositeStat(P.parseBlock(nil, Scanner.LBRACE)); case Scanner.IF: return P.parseIfStat(); case Scanner.FOR: return P.parseForStat(); case Scanner.SWITCH: return P.parseSwitchStat(); case Scanner.SELECT: return P.parseSelectStat(); case Scanner.SEMICOLON: // don't consume the ";", it is the separator following the empty statement return &AST.EmptyStat(P.pos); } // no statement found P.error(P.pos, "statement expected"); return &AST.BadStat(P.pos); } // ---------------------------------------------------------------------------- // Declarations func (P *Parser) parseImportSpec(d *AST.Decl) { if P.trace { defer un(trace(P, "ImportSpec")); } if P.tok == Scanner.PERIOD { P.error(P.pos, `"import ." not yet handled properly`); P.next(); } else if P.tok == Scanner.IDENT { d.Ident = P.parseIdent(nil); } if P.tok == Scanner.STRING { // TODO eventually the scanner should strip the quotes d.Val = &AST.BasicLit(P.pos, Scanner.STRING, P.val); P.next(); } else { P.expect(Scanner.STRING); // use expect() error handling } } func (P *Parser) parseConstSpec(d *AST.Decl) { if P.trace { defer un(trace(P, "ConstSpec")); } d.Ident = P.parseIdentList(); d.Typ = P.tryType(); if P.tok == Scanner.ASSIGN { P.next(); d.Val = P.parseExpressionList(); } } func (P *Parser) parseTypeSpec(d *AST.Decl) { if P.trace { defer un(trace(P, "TypeSpec")); } d.Ident = P.parseIdent(nil); d.Typ = P.parseType(); P.opt_semi = true; } func (P *Parser) parseVarSpec(d *AST.Decl) { if P.trace { defer un(trace(P, "VarSpec")); } d.Ident = P.parseIdentList(); if P.tok == Scanner.ASSIGN { P.next(); d.Val = P.parseExpressionList(); } else { d.Typ = P.parseVarType(); if P.tok == Scanner.ASSIGN { P.next(); d.Val = P.parseExpressionList(); } } } func (P *Parser) parseSpec(d *AST.Decl) { kind := SymbolTable.NONE; switch d.Tok { case Scanner.IMPORT: P.parseImportSpec(d); kind = SymbolTable.PACKAGE; case Scanner.CONST: P.parseConstSpec(d); kind = SymbolTable.CONST; case Scanner.TYPE: P.parseTypeSpec(d); kind = SymbolTable.TYPE; case Scanner.VAR: P.parseVarSpec(d); kind = SymbolTable.VAR; default: unreachable(); } // semantic checks if d.Tok == Scanner.IMPORT { if d.Ident != nil { P.declare(d.Ident, kind, nil); } } else { P.declare(d.Ident, kind, d.Typ); if d.Val != nil { // initialization/assignment llen := AST.ExprLen(d.Ident); rlen := AST.ExprLen(d.Val); if llen == rlen { // TODO } else if rlen == 1 { // TODO } else { if llen < rlen { P.error(AST.ExprAt(d.Val, llen).Pos(), "more expressions than variables"); } else { P.error(AST.ExprAt(d.Ident, rlen).Pos(), "more variables than expressions"); } } } else { // TODO } } } func (P *Parser) parseDecl(keyword int) *AST.Decl { if P.trace { defer un(trace(P, "Decl")); } d := AST.NewDecl(P.pos, keyword); P.expect(keyword); if P.tok == Scanner.LPAREN { P.next(); d.List = vector.New(0); for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF { d1 := AST.NewDecl(P.pos, keyword); P.parseSpec(d1); d.List.Push(d1); if P.tok == Scanner.SEMICOLON { P.next(); } else { break; } } d.End = P.pos; P.expect(Scanner.RPAREN); P.opt_semi = true; } else { P.parseSpec(d); } return d; } // Function declarations // // func ident (params) // func ident (params) type // func ident (params) (results) // func (recv) ident (params) // func (recv) ident (params) type // func (recv) ident (params) (results) func (P *Parser) parseFunctionDecl() *AST.Decl { if P.trace { defer un(trace(P, "FunctionDecl")); } d := AST.NewDecl(P.pos, Scanner.FUNC); P.expect(Scanner.FUNC); var recv *AST.Type; if P.tok == Scanner.LPAREN { pos := P.pos; recv = P.parseParameters(true); if recv.Nfields() != 1 { P.error(pos, "must have exactly one receiver"); } } ident := P.parseIdent(nil); d.Ident = ident; d.Typ = P.parseSignature(); d.Typ.Key = recv; if P.tok == Scanner.LBRACE { d.Body = P.parseBlock(d.Typ, Scanner.LBRACE); } return d; } func (P *Parser) parseDeclaration() *AST.Decl { if P.trace { defer un(trace(P, "Declaration")); } d := AST.BadDecl; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: d = P.parseDecl(P.tok); case Scanner.FUNC: d = P.parseFunctionDecl(); default: P.error(P.pos, "declaration expected"); P.next(); // make progress } return d; } // ---------------------------------------------------------------------------- // Program func (P *Parser) ParseProgram() *AST.Program { if P.trace { defer un(trace(P, "Program")); } P.openScope(); p := AST.NewProgram(P.pos); P.expect(Scanner.PACKAGE); p.Ident = P.parseIdent(nil); // package body { P.openScope(); p.Decls = vector.New(0); for P.tok == Scanner.IMPORT { p.Decls.Push(P.parseDecl(Scanner.IMPORT)); P.OptSemicolon(); } if !P.deps { for P.tok != Scanner.EOF { p.Decls.Push(P.parseDeclaration()); P.OptSemicolon(); } } P.closeScope(); } p.Comments = P.comments; P.closeScope(); return p; }