gob: add support for maps.

Because maps are mostly a hidden type, they must be
implemented using reflection values and will not be as
efficient as arrays and slices.

R=rsc
CC=golang-dev
https://golang.org/cl/1127041
This commit is contained in:
Rob Pike 2010-05-05 16:46:39 -07:00
parent 46152bb9fe
commit 7861da737e
6 changed files with 254 additions and 43 deletions

View File

@ -572,6 +572,7 @@ func TestEndToEnd(t *testing.T) {
s2 := "string2"
type T1 struct {
a, b, c int
m map[string]*float
n *[3]float
strs *[2]string
int64s *[]int64
@ -579,10 +580,13 @@ func TestEndToEnd(t *testing.T) {
y []byte
t *T2
}
pi := 3.14159
e := 2.71828
t1 := &T1{
a: 17,
b: 18,
c: -5,
m: map[string]*float{"pi": &pi, "e": &e},
n: &[3]float{1.5, 2.5, 3.5},
strs: &[2]string{s1, s2},
int64s: &[]int64{77, 89, 123412342134},
@ -921,6 +925,7 @@ type IT0 struct {
ignore_g string
ignore_h []byte
ignore_i *RT1
ignore_m map[string]int
c float
}
@ -937,6 +942,7 @@ func TestIgnoredFields(t *testing.T) {
it0.ignore_g = "pay no attention"
it0.ignore_h = []byte("to the curtain")
it0.ignore_i = &RT1{3.1, "hi", 7, "hello"}
it0.ignore_m = map[string]int{"one": 1, "two": 2}
b := new(bytes.Buffer)
NewEncoder(b).Encode(it0)

View File

@ -447,6 +447,49 @@ func decodeArray(atyp *reflect.ArrayType, state *decodeState, p uintptr, elemOp
return decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl)
}
func decodeIntoValue(state *decodeState, op decOp, indir int, v reflect.Value, ovfl os.ErrorString) reflect.Value {
instr := &decInstr{op, 0, indir, 0, ovfl}
up := unsafe.Pointer(v.Addr())
if indir > 1 {
up = decIndirect(up, indir)
}
op(instr, state, up)
return v
}
func decodeMap(mtyp *reflect.MapType, state *decodeState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl os.ErrorString) os.Error {
if indir > 0 {
up := unsafe.Pointer(p)
if *(*unsafe.Pointer)(up) == nil {
// Allocate object.
*(*unsafe.Pointer)(up) = unsafe.New(mtyp)
}
p = *(*uintptr)(up)
}
up := unsafe.Pointer(p)
if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime
// Allocate map.
*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Get())
}
// Maps cannot be accessed by moving addresses around the way
// that slices etc. can. We must recover a full reflection value for
// the iteration.
v := reflect.NewValue(unsafe.Unreflect(mtyp, unsafe.Pointer((p)))).(*reflect.MapValue)
n := int(decodeUint(state))
for i := 0; i < n && state.err == nil; i++ {
key := decodeIntoValue(state, keyOp, keyIndir, reflect.MakeZero(mtyp.Key()), ovfl)
if state.err != nil {
break
}
elem := decodeIntoValue(state, elemOp, elemIndir, reflect.MakeZero(mtyp.Elem()), ovfl)
if state.err != nil {
break
}
v.SetElem(key, elem)
}
return state.err
}
func ignoreArrayHelper(state *decodeState, elemOp decOp, length int) os.Error {
instr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")}
for i := 0; i < length && state.err == nil; i++ {
@ -462,6 +505,18 @@ func ignoreArray(state *decodeState, elemOp decOp, length int) os.Error {
return ignoreArrayHelper(state, elemOp, length)
}
func ignoreMap(state *decodeState, keyOp, elemOp decOp) os.Error {
n := int(decodeUint(state))
keyInstr := &decInstr{keyOp, 0, 0, 0, os.ErrorString("no error")}
elemInstr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")}
for i := 0; i < n && state.err == nil; i++ {
keyOp(keyInstr, state, nil)
elemOp(elemInstr, state, nil)
}
return state.err
}
func decodeSlice(atyp *reflect.SliceType, state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl os.ErrorString) os.Error {
n := int(uintptr(decodeUint(state)))
if indir > 0 {
@ -517,6 +572,39 @@ func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string) (decOp
if !ok {
// Special cases
switch t := typ.(type) {
case *reflect.ArrayType:
name = "element of " + name
elemId := dec.wireType[wireId].arrayT.Elem
elemOp, elemIndir, err := dec.decOpFor(elemId, t.Elem(), name)
if err != nil {
return nil, 0, err
}
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.err = decodeArray(t, state, uintptr(p), elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
}
case *reflect.MapType:
name = "element of " + name
keyId := dec.wireType[wireId].mapT.Key
elemId := dec.wireType[wireId].mapT.Elem
keyOp, keyIndir, err := dec.decOpFor(keyId, t.Key(), name)
if err != nil {
return nil, 0, err
}
elemOp, elemIndir, err := dec.decOpFor(elemId, t.Elem(), name)
if err != nil {
return nil, 0, err
}
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
up := unsafe.Pointer(p)
if indir > 1 {
up = decIndirect(up, indir)
}
state.err = decodeMap(t, state, uintptr(up), keyOp, elemOp, i.indir, keyIndir, elemIndir, ovfl)
}
case *reflect.SliceType:
name = "element of " + name
if _, ok := t.Elem().(*reflect.Uint8Type); ok {
@ -527,7 +615,7 @@ func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string) (decOp
if tt, ok := builtinIdToType[wireId]; ok {
elemId = tt.(*sliceType).Elem
} else {
elemId = dec.wireType[wireId].slice.Elem
elemId = dec.wireType[wireId].sliceT.Elem
}
elemOp, elemIndir, err := dec.decOpFor(elemId, t.Elem(), name)
if err != nil {
@ -538,18 +626,6 @@ func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string) (decOp
state.err = decodeSlice(t, state, uintptr(p), elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl)
}
case *reflect.ArrayType:
name = "element of " + name
elemId := dec.wireType[wireId].array.Elem
elemOp, elemIndir, err := dec.decOpFor(elemId, t.Elem(), name)
if err != nil {
return nil, 0, err
}
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.err = decodeArray(t, state, uintptr(p), elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
}
case *reflect.StructType:
// Generate a closure that calls out to the engine for the nested type.
enginePtr, err := dec.getDecEnginePtr(wireId, typ)
@ -575,18 +651,33 @@ func (dec *Decoder) decIgnoreOpFor(wireId typeId) (decOp, os.Error) {
// Special cases
wire := dec.wireType[wireId]
switch {
case wire.array != nil:
elemId := wire.array.Elem
case wire.arrayT != nil:
elemId := wire.arrayT.Elem
elemOp, err := dec.decIgnoreOpFor(elemId)
if err != nil {
return nil, err
}
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.err = ignoreArray(state, elemOp, wire.array.Len)
state.err = ignoreArray(state, elemOp, wire.arrayT.Len)
}
case wire.slice != nil:
elemId := wire.slice.Elem
case wire.mapT != nil:
keyId := dec.wireType[wireId].mapT.Key
elemId := dec.wireType[wireId].mapT.Elem
keyOp, err := dec.decIgnoreOpFor(keyId)
if err != nil {
return nil, err
}
elemOp, err := dec.decIgnoreOpFor(elemId)
if err != nil {
return nil, err
}
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.err = ignoreMap(state, keyOp, elemOp)
}
case wire.sliceT != nil:
elemId := wire.sliceT.Elem
elemOp, err := dec.decIgnoreOpFor(elemId)
if err != nil {
return nil, err
@ -595,7 +686,7 @@ func (dec *Decoder) decIgnoreOpFor(wireId typeId) (decOp, os.Error) {
state.err = ignoreSlice(state, elemOp)
}
case wire.strct != nil:
case wire.structT != nil:
// Generate a closure that calls out to the engine for the nested type.
enginePtr, err := dec.getIgnoreEnginePtr(wireId)
if err != nil {
@ -640,11 +731,18 @@ func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId) bool {
return fw == tString
case *reflect.ArrayType:
wire, ok := dec.wireType[fw]
if !ok || wire.array == nil {
if !ok || wire.arrayT == nil {
return false
}
array := wire.array
return ok && t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem)
array := wire.arrayT
return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem)
case *reflect.MapType:
wire, ok := dec.wireType[fw]
if !ok || wire.mapT == nil {
return false
}
mapType := wire.mapT
return dec.compatibleType(t.Key(), mapType.Key) && dec.compatibleType(t.Elem(), mapType.Elem)
case *reflect.SliceType:
// Is it an array of bytes?
et := t.Elem()
@ -656,7 +754,7 @@ func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId) bool {
if tt, ok := builtinIdToType[fw]; ok {
sw = tt.(*sliceType)
} else {
sw = dec.wireType[fw].slice
sw = dec.wireType[fw].sliceT
}
elem, _ := indirect(t.Elem())
return sw != nil && dec.compatibleType(elem, sw.Elem)
@ -677,7 +775,7 @@ func (dec *Decoder) compileDec(remoteId typeId, rt reflect.Type) (engine *decEng
if !ok1 || !ok2 {
return nil, errNotStruct
}
wireStruct = w.strct
wireStruct = w.structT
}
engine = new(decEngine)
engine.instr = make([]decInstr, len(wireStruct.field))
@ -760,7 +858,7 @@ func (dec *Decoder) decode(wireId typeId, e interface{}) os.Error {
return err
}
engine := *enginePtr
if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].strct.field) > 0 {
if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].structT.field) > 0 {
name := rt.Name()
return os.ErrorString("gob: type mismatch: no fields matched compiling decoder for " + name)
}

View File

@ -22,7 +22,7 @@ const uint64Size = unsafe.Sizeof(uint64(0))
type encoderState struct {
b *bytes.Buffer
err os.Error // error encountered during encoding.
inArray bool // encoding an array element
inArray bool // encoding an array element or map key/value pair
fieldnum int // the last field number written.
buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
}
@ -297,7 +297,7 @@ func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
return state.err
}
func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, length int, elemIndir int) os.Error {
func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) os.Error {
state := new(encoderState)
state.b = b
state.fieldnum = -1
@ -319,6 +319,39 @@ func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, length i
return state.err
}
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
for i := 0; i < indir && v != nil; i++ {
v = reflect.Indirect(v)
}
if v == nil {
state.err = os.ErrorString("gob: encodeMap: nil element")
return
}
op(nil, state, unsafe.Pointer(v.Addr()))
}
func encodeMap(b *bytes.Buffer, rt reflect.Type, p uintptr, keyOp, elemOp encOp, keyIndir, elemIndir int) os.Error {
state := new(encoderState)
state.b = b
state.fieldnum = -1
state.inArray = true
// Maps cannot be accessed by moving addresses around the way
// that slices etc. can. We must recover a full reflection value for
// the iteration.
v := reflect.NewValue(unsafe.Unreflect(rt, unsafe.Pointer((p))))
mv := reflect.Indirect(v).(*reflect.MapValue)
keys := mv.Keys()
encodeUint(state, uint64(len(keys)))
for _, key := range keys {
if state.err != nil {
break
}
encodeReflectValue(state, key, keyOp, keyIndir)
encodeReflectValue(state, mv.Elem(key), elemOp, elemIndir)
}
return state.err
}
var encOpMap = map[reflect.Type]encOp{
valueKind(false): encBool,
valueKind(int(0)): encInt,
@ -344,7 +377,6 @@ func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
typ, indir := indirect(rt)
op, ok := encOpMap[reflect.Typeof(typ)]
if !ok {
typ, _ := indirect(rt)
// Special cases
switch t := typ.(type) {
case *reflect.SliceType:
@ -363,7 +395,7 @@ func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
return
}
state.update(i)
state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), int(slice.Len), indir)
state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len))
}
case *reflect.ArrayType:
// True arrays have size in the type.
@ -373,7 +405,20 @@ func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
}
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
state.update(i)
state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), t.Len(), indir)
state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len())
}
case *reflect.MapType:
keyOp, keyIndir, err := encOpFor(t.Key())
if err != nil {
return nil, 0, err
}
elemOp, elemIndir, err := encOpFor(t.Elem())
if err != nil {
return nil, 0, err
}
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
state.update(i)
state.err = encodeMap(state.b, typ, uintptr(p), keyOp, elemOp, keyIndir, elemIndir)
}
case *reflect.StructType:
// Generate a closure that calls out to the engine for the nested type.

View File

@ -71,9 +71,8 @@
Structs, arrays and slices are also supported. Strings and arrays of bytes are
supported with a special, efficient representation (see below).
Maps are not supported yet, but they will be. Interfaces, functions, and channels
cannot be sent in a gob. Attempting to encode a value that contains one will
fail.
Interfaces, functions, and channels cannot be sent in a gob. Attempting
to encode a value that contains one will fail.
The rest of this comment documents the encoding, details that are not important
for most users. Details are presented bottom-up.
@ -263,10 +262,13 @@ func (enc *Encoder) sendType(origt reflect.Type) {
case *reflect.ArrayType:
// arrays must be sent so we know their lengths and element types.
break
case *reflect.MapType:
// maps must be sent so we know their lengths and key/value types.
break
case *reflect.StructType:
// structs must be sent so we know their fields.
break
case *reflect.ChanType, *reflect.FuncType, *reflect.MapType, *reflect.InterfaceType:
case *reflect.ChanType, *reflect.FuncType, *reflect.InterfaceType:
// Probably a bad field in a struct.
enc.badType(rt)
return

View File

@ -142,6 +142,31 @@ func (a *arrayType) safeString(seen map[typeId]bool) string {
func (a *arrayType) string() string { return a.safeString(make(map[typeId]bool)) }
// Map type
type mapType struct {
commonType
Key typeId
Elem typeId
}
func newMapType(name string, key, elem gobType) *mapType {
m := &mapType{commonType{name: name}, key.id(), elem.id()}
setTypeId(m)
return m
}
func (m *mapType) safeString(seen map[typeId]bool) string {
if seen[m._id] {
return m.name
}
seen[m._id] = true
key := m.Key.gobType().safeString(seen)
elem := m.Elem.gobType().safeString(seen)
return fmt.Sprintf("map[%s]%s", key, elem)
}
func (m *mapType) string() string { return m.safeString(make(map[typeId]bool)) }
// Slice type
type sliceType struct {
commonType
@ -239,6 +264,17 @@ func newTypeObject(name string, rt reflect.Type) (gobType, os.Error) {
}
return newArrayType(name, gt, t.Len()), nil
case *reflect.MapType:
kt, err := getType("", t.Key())
if err != nil {
return nil, err
}
vt, err := getType("", t.Elem())
if err != nil {
return nil, err
}
return newMapType(name, kt, vt), nil
case *reflect.SliceType:
// []byte == []uint8 is a special case
if _, ok := t.Elem().(*reflect.Uint8Type); ok {
@ -330,16 +366,18 @@ func bootstrapType(name string, e interface{}, expect typeId) typeId {
// using the gob rules for sending a structure, except that we assume the
// ids for wireType and structType are known. The relevant pieces
// are built in encode.go's init() function.
// To maintain binary compatibility, if you extend this type, always put
// the new fields last.
type wireType struct {
array *arrayType
slice *sliceType
strct *structType
arrayT *arrayType
sliceT *sliceType
structT *structType
mapT *mapType
}
func (w *wireType) name() string {
if w.strct != nil {
return w.strct.name
if w.structT != nil {
return w.structT.name
}
return "unknown"
}
@ -370,14 +408,16 @@ func getTypeInfo(rt reflect.Type) (*typeInfo, os.Error) {
t := info.id.gobType()
switch typ := rt.(type) {
case *reflect.ArrayType:
info.wire = &wireType{array: t.(*arrayType)}
info.wire = &wireType{arrayT: t.(*arrayType)}
case *reflect.MapType:
info.wire = &wireType{mapT: t.(*mapType)}
case *reflect.SliceType:
// []byte == []uint8 is a special case handled separately
if _, ok := typ.Elem().(*reflect.Uint8Type); !ok {
info.wire = &wireType{slice: t.(*sliceType)}
info.wire = &wireType{sliceT: t.(*sliceType)}
}
case *reflect.StructType:
info.wire = &wireType{strct: t.(*structType)}
info.wire = &wireType{structT: t.(*structType)}
}
typeInfoMap[rt] = info
}

View File

@ -105,6 +105,26 @@ func TestSliceType(t *testing.T) {
}
}
func TestMapType(t *testing.T) {
var m map[string]int
mapStringInt := getTypeUnlocked("map", reflect.Typeof(m))
var newm map[string]int
newMapStringInt := getTypeUnlocked("map1", reflect.Typeof(newm))
if mapStringInt != newMapStringInt {
t.Errorf("second registration of map[string]int creates new type")
}
var b map[string]bool
mapStringBool := getTypeUnlocked("", reflect.Typeof(b))
if mapStringBool == mapStringInt {
t.Errorf("registration of map[string]bool creates same type as map[string]int")
}
str := mapStringBool.string()
expected := "map[string]bool"
if str != expected {
t.Errorf("map printed as %q; expected %q", str, expected)
}
}
type Bar struct {
x string
}