arduino-esp32/cores/esp32/esp32-hal-rmt.c
Rodrigo Garcia 2333df5ac6
Removes a few Warnings and fixes Math rand() to work like Arduino mainstream (#7613)
* fixes warnings and rand function

* removes extra space - style
2022-12-21 18:48:10 +02:00

635 lines
18 KiB
C

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal.h"
#include "driver/rmt.h"
/**
* Internal macros
*/
#define MAX_CHANNELS (SOC_RMT_GROUPS * SOC_RMT_CHANNELS_PER_GROUP)
#define RMT_TX_CH_START (0)
#define RMT_TX_CH_END (SOC_RMT_TX_CANDIDATES_PER_GROUP - 1)
#define RMT_RX_CH_START (SOC_RMT_CHANNELS_PER_GROUP - SOC_RMT_TX_CANDIDATES_PER_GROUP)
#define RMT_RX_CH_END (SOC_RMT_CHANNELS_PER_GROUP - 1)
#define _LIMIT(a,b) (a>b?b:a)
#if CONFIG_DISABLE_HAL_LOCKS
# define RMT_MUTEX_LOCK(channel)
# define RMT_MUTEX_UNLOCK(channel)
#else
# define RMT_MUTEX_LOCK(channel) do {} while (xSemaphoreTake(g_rmt_objlocks[channel], portMAX_DELAY) != pdPASS)
# define RMT_MUTEX_UNLOCK(channel) xSemaphoreGive(g_rmt_objlocks[channel])
#endif /* CONFIG_DISABLE_HAL_LOCKS */
//#define _RMT_INTERNAL_DEBUG
#ifdef _RMT_INTERNAL_DEBUG
# define DEBUG_INTERRUPT_START(pin) digitalWrite(pin, 1);
# define DEBUG_INTERRUPT_END(pin) digitalWrite(pin, 0);
#else
# define DEBUG_INTERRUPT_START(pin)
# define DEBUG_INTERRUPT_END(pin)
#endif /* _RMT_INTERNAL_DEBUG */
#define RMT_DEFAULT_ARD_CONFIG_TX(gpio, channel_id, buffers) \
{ \
.rmt_mode = RMT_MODE_TX, \
.channel = channel_id, \
.gpio_num = gpio, \
.clk_div = 1, \
.mem_block_num = buffers, \
.flags = 0, \
.tx_config = { \
.carrier_level = RMT_CARRIER_LEVEL_HIGH, \
.idle_level = RMT_IDLE_LEVEL_LOW, \
.carrier_duty_percent = 50, \
.carrier_en = false, \
.loop_en = false, \
.idle_output_en = true, \
} \
}
#define RMT_DEFAULT_ARD_CONFIG_RX(gpio, channel_id, buffers) \
{ \
.rmt_mode = RMT_MODE_RX, \
.channel = channel_id, \
.gpio_num = gpio, \
.clk_div = 1, \
.mem_block_num = buffers, \
.flags = 0, \
.rx_config = { \
.idle_threshold = 0x80, \
.filter_ticks_thresh = 100, \
.filter_en = false, \
} \
}
/**
* Typedefs for internal stuctures, enums
*/
struct rmt_obj_s
{
bool allocated;
EventGroupHandle_t events;
uint32_t channel;
uint32_t buffers;
uint32_t data_size;
uint32_t* data_ptr;
rmt_rx_data_cb_t cb;
void * arg;
TaskHandle_t rxTaskHandle;
bool rx_completed;
bool tx_not_rx;
};
/**
* Internal variables for channel descriptors
*/
static xSemaphoreHandle g_rmt_objlocks[MAX_CHANNELS] = {
NULL, NULL, NULL, NULL,
#if MAX_CHANNELS > 4
NULL, NULL, NULL, NULL
#endif
};
static rmt_obj_t g_rmt_objects[MAX_CHANNELS] = {
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
#if MAX_CHANNELS > 4
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
{ false, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, true, true},
#endif
};
/**
* Internal variables for driver data
*/
static xSemaphoreHandle g_rmt_block_lock = NULL;
/**
* Internal method (private) declarations
*/
static rmt_obj_t* _rmtAllocate(int pin, int from, int size)
{
int i;
// setup how many buffers shall we use
g_rmt_objects[from].buffers = size;
for (i=0; i<size; i++) {
// mark the block of channels as used
g_rmt_objects[i+from].allocated = true;
}
return &(g_rmt_objects[from]);
}
void _rmtDumpStatus(rmt_obj_t* rmt)
{
bool loop_en;
uint8_t div_cnt;
uint8_t memNum;
bool lowPowerMode;
rmt_mem_owner_t owner;
uint16_t idleThreshold;
uint32_t status;
rmt_source_clk_t srcClk;
rmt_channel_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_get_tx_loop_mode(channel, &loop_en);
rmt_get_clk_div(channel, &div_cnt);
rmt_get_mem_block_num(channel, &memNum);
rmt_get_mem_pd(channel, &lowPowerMode);
rmt_get_memory_owner(channel, &owner);
rmt_get_rx_idle_thresh(channel, &idleThreshold);
rmt_get_status(channel, &status);
rmt_get_source_clk(channel, &srcClk);
log_d("Status for RMT channel %d", channel);
log_d("- Loop enabled: %d", loop_en);
log_d("- Clock divisor: %d", div_cnt);
log_d("- Number of memory blocks: %d", memNum);
log_d("- Low power mode: %d", lowPowerMode);
log_d("- Memory owner: %s", owner==RMT_MEM_OWNER_TX?"TX":"RX");
log_d("- Idle threshold: %d", idleThreshold);
log_d("- Status: %d", status);
log_d("- Source clock: %s", srcClk==RMT_BASECLK_APB?"APB (80MHz)":"1MHz");
RMT_MUTEX_UNLOCK(channel);
}
static void _rmtRxTask(void *args) {
rmt_obj_t *rmt = (rmt_obj_t *) args;
RingbufHandle_t rb = NULL;
size_t rmt_len = 0;
rmt_item32_t *data = NULL;
if (!rmt) {
log_e(" -- Inavalid Argument");
goto err;
}
int channel = rmt->channel;
rmt_get_ringbuf_handle(channel, &rb);
if (!rb) {
log_e(" -- Failed to get RMT ringbuffer handle");
goto err;
}
for(;;) {
data = (rmt_item32_t *) xRingbufferReceive(rb, &rmt_len, portMAX_DELAY);
if (data) {
log_d(" -- Got %d bytes on RX Ringbuffer - CH %d", rmt_len, rmt->channel);
rmt->rx_completed = true; // used in rmtReceiveCompleted()
// callback
if (rmt->cb) {
(rmt->cb)((uint32_t *)data, rmt_len / sizeof(rmt_item32_t), rmt->arg);
} else {
// stop RX -- will force a correct call with a callback pointer / new rmtReadData() / rmtReadAsync()
rmt_rx_stop(channel);
}
// Async Read -- copy data to caller
if (rmt->data_ptr && rmt->data_size) {
uint32_t data_size = rmt->data_size;
uint32_t read_len = rmt_len / sizeof(rmt_item32_t);
if (read_len < rmt->data_size) data_size = read_len;
rmt_item32_t *p = (rmt_item32_t *)rmt->data_ptr;
for (uint32_t i = 0; i < data_size; i++) {
p[i] = data[i];
}
}
// set events
if (rmt->events) {
xEventGroupSetBits(rmt->events, RMT_FLAG_RX_DONE);
}
vRingbufferReturnItem(rb, (void *) data);
} // xRingbufferReceive
} // for(;;)
err:
vTaskDelete(NULL);
}
static bool _rmtCreateRxTask(rmt_obj_t* rmt)
{
if (!rmt) {
return false;
}
if (rmt->rxTaskHandle) { // Task already created
return false;
}
xTaskCreate(_rmtRxTask, "rmt_rx_task", 4096, rmt, 20, &rmt->rxTaskHandle);
if(rmt->rxTaskHandle == NULL){
log_e("RMT RX Task create failed");
return false;
}
return true;
}
// Helper function to test if an RMT channel is correctly assigned to TX or RX, issuing an error message if necessary
// Also test RMT pointer for NULL and returns false in case it is NULL
// return true when it is correctly assigned, false otherwise
static bool _rmtCheckTXnotRX(rmt_obj_t* rmt, bool tx_not_rx)
{
if (!rmt) { // also returns false on NULL
return false;
}
if (rmt->tx_not_rx == tx_not_rx) { // matches expected RX/TX channel
return true;
}
if (tx_not_rx) { // expected TX channel
log_e("Can't write on a RX RMT Channel");
} else{ // expected RX channel
log_e("Can't read on a TX RMT Channel");
}
return false; // missmatched
}
/**
* Public method definitions
*/
bool rmtSetCarrier(rmt_obj_t* rmt, bool carrier_en, bool carrier_level, uint32_t low, uint32_t high)
{
if (!_rmtCheckTXnotRX(rmt, RMT_TX_MODE) || low > 0xFFFF || high > 0xFFFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_set_tx_carrier(channel, carrier_en, high, low, carrier_level);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtSetFilter(rmt_obj_t* rmt, bool filter_en, uint32_t filter_level)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE) || filter_level > 0xFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_set_rx_filter(channel, filter_en, filter_level);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtSetRxThreshold(rmt_obj_t* rmt, uint32_t value)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE) || value > 0xFFFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_set_rx_idle_thresh(channel, value);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtDeinit(rmt_obj_t *rmt)
{
if (!rmt) {
return false;
}
// sanity check
if (rmt != &(g_rmt_objects[rmt->channel])) {
return false;
}
RMT_MUTEX_LOCK(rmt->channel);
// force stopping rmt processing
if (rmt->tx_not_rx) {
rmt_tx_stop(rmt->channel);
} else {
rmt_rx_stop(rmt->channel);
if(rmt->rxTaskHandle){
vTaskDelete(rmt->rxTaskHandle);
rmt->rxTaskHandle = NULL;
}
}
rmt_driver_uninstall(rmt->channel);
size_t from = rmt->channel;
size_t to = rmt->buffers + rmt->channel;
size_t i;
for (i = from; i < to; i++) {
g_rmt_objects[i].allocated = false;
}
g_rmt_objects[from].channel = 0;
g_rmt_objects[from].buffers = 0;
RMT_MUTEX_UNLOCK(rmt->channel);
#if !CONFIG_DISABLE_HAL_LOCKS
if(g_rmt_objlocks[from] != NULL) {
vSemaphoreDelete(g_rmt_objlocks[from]);
g_rmt_objlocks[from] = NULL;
}
#endif
return true;
}
bool rmtLoop(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
{
if (!_rmtCheckTXnotRX(rmt, RMT_TX_MODE)) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_tx_stop(channel);
rmt_set_tx_loop_mode(channel, true);
rmt_write_items(channel, (const rmt_item32_t *)data, size, false);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtWrite(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
{
if (!_rmtCheckTXnotRX(rmt, RMT_TX_MODE)) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_tx_stop(channel);
rmt_set_tx_loop_mode(channel, false);
rmt_write_items(channel, (const rmt_item32_t *)data, size, false);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtWriteBlocking(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
{
if (!_rmtCheckTXnotRX(rmt, RMT_TX_MODE)) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_tx_stop(channel);
rmt_set_tx_loop_mode(channel, false);
rmt_write_items(channel, (const rmt_item32_t *)data, size, true);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtReadData(rmt_obj_t* rmt, uint32_t* data, size_t size)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE)) {
return false;
}
rmtReadAsync(rmt, (rmt_data_t*) data, size, NULL, false, 0);
return true;
}
bool rmtBeginReceive(rmt_obj_t* rmt)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE)) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt_set_memory_owner(channel, RMT_MEM_OWNER_RX);
rmt_rx_start(channel, true);
rmt->rx_completed = false;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtReceiveCompleted(rmt_obj_t* rmt)
{
if (!rmt) {
return false;
}
return rmt->rx_completed;
}
bool rmtRead(rmt_obj_t* rmt, rmt_rx_data_cb_t cb, void * arg)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE)) {
return false;
}
int channel = rmt->channel;
rmt->arg = arg;
rmt->cb = cb;
RMT_MUTEX_LOCK(channel);
// cb as NULL is a way to cancel the callback process
if (cb == NULL) {
rmt_rx_stop(channel);
return true;
}
// Start a read process but now with a call back function
rmt_set_memory_owner(channel, RMT_MEM_OWNER_RX);
rmt_rx_start(channel, true);
rmt->rx_completed = false;
_rmtCreateRxTask(rmt);
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtEnd(rmt_obj_t* rmt)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
if (rmt->tx_not_rx) {
rmt_tx_stop(channel);
} else {
rmt_rx_stop(channel);
rmt->rx_completed = true;
}
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtReadAsync(rmt_obj_t* rmt, rmt_data_t* data, size_t size, void* eventFlag, bool waitForData, uint32_t timeout)
{
if (!_rmtCheckTXnotRX(rmt, RMT_RX_MODE)) {
return false;
}
int channel = rmt->channel;
// No limit on size with IDF ;-)
//if (g_rmt_objects[channel].buffers < size/SOC_RMT_MEM_WORDS_PER_CHANNEL) {
// return false;
//}
RMT_MUTEX_LOCK(channel);
if (eventFlag) {
xEventGroupClearBits(eventFlag, RMT_FLAGS_ALL);
}
// if NULL, no problems - rmtReadAsync works as a plain rmtReadData()
rmt->events = eventFlag;
// if NULL, no problems - task will take care of it
rmt->data_ptr = (uint32_t*)data;
rmt->data_size = size;
// Start a read process
rmt_set_memory_owner(channel, RMT_MEM_OWNER_RX);
rmt_rx_start(channel, true);
rmt->rx_completed = false;
_rmtCreateRxTask(rmt);
RMT_MUTEX_UNLOCK(channel);
// wait for data if requested so
if (waitForData && eventFlag) {
xEventGroupWaitBits(eventFlag, RMT_FLAGS_ALL,
pdTRUE /* clear on exit */, pdFALSE /* wait for all bits */, timeout);
}
return true;
}
float rmtSetTick(rmt_obj_t* rmt, float tick)
{
if (!rmt) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
// RMT_BASECLK_REF (1MHz) is not supported in IDF upon Programmming Guide
// Only APB works
rmt_set_source_clk(channel, RMT_BASECLK_APB);
int apb_div = _LIMIT(tick/12.5f, 256);
float apb_tick = 12.5f * apb_div;
rmt_set_clk_div(channel, apb_div & 0xFF);
RMT_MUTEX_UNLOCK(channel);
return apb_tick;
}
rmt_obj_t* rmtInit(int pin, bool tx_not_rx, rmt_reserve_memsize_t memsize)
{
uint32_t buffers = memsize;
rmt_obj_t* rmt = NULL;
uint32_t i = 0;
uint32_t j = 0;
// create common block mutex for protecting allocs from multiple threads
if (!g_rmt_block_lock) {
g_rmt_block_lock = xSemaphoreCreateMutex();
}
// lock
while (xSemaphoreTake(g_rmt_block_lock, portMAX_DELAY) != pdPASS) {}
// Some SoC may have fixed channel numbers for TX and RX - example: ESP32C3
uint8_t ch_start, ch_end;
if (tx_not_rx) {
ch_start = RMT_TX_CH_START;
ch_end = RMT_TX_CH_END;
} else {
ch_start = RMT_RX_CH_START;
ch_end = RMT_RX_CH_END;
}
for (i=ch_start; i<=ch_end; i++) {
for (j=0; j<buffers && i+j <= ch_end; j++) {
// if the space is ocupied break and continue on other channel
if (g_rmt_objects[i+j].allocated) {
i += j; // continue searching from latter channel
break;
}
}
if (j == buffers) {
// found a space in channel descriptors
break;
}
}
if (i == MAX_CHANNELS || i+j > MAX_CHANNELS || j != buffers) {
xSemaphoreGive(g_rmt_block_lock);
log_e("rmInit Failed - not enough channels");
return NULL;
}
// A suitable channel has been found, it has to block its resources in our internal data strucuture
size_t channel = i;
rmt = _rmtAllocate(pin, i, buffers);
xSemaphoreGive(g_rmt_block_lock);
rmt->buffers = buffers;
rmt->channel = channel;
rmt->arg = NULL;
rmt->cb = NULL;
rmt->data_ptr = NULL;
rmt->data_size = 0;
rmt->rx_completed = false;
rmt->events = NULL;
rmt->tx_not_rx = tx_not_rx;
#if !CONFIG_DISABLE_HAL_LOCKS
if(g_rmt_objlocks[channel] == NULL) {
g_rmt_objlocks[channel] = xSemaphoreCreateMutex();
if(g_rmt_objlocks[channel] == NULL) {
return NULL;
}
}
#endif
RMT_MUTEX_LOCK(channel);
esp_err_t esp_err_code = ESP_OK;
if (tx_not_rx) {
rmt_config_t config = RMT_DEFAULT_ARD_CONFIG_TX(pin, channel, buffers);
esp_err_code = rmt_config(&config);
if (esp_err_code == ESP_OK)
esp_err_code = rmt_driver_install(channel, 0, 0);
log_d(" -- %s RMT - CH %d - %d RAM Blocks - pin %d", tx_not_rx?"TX":"RX", channel, buffers, pin);
} else {
rmt_config_t config = RMT_DEFAULT_ARD_CONFIG_RX(pin, channel, buffers);
esp_err_code = rmt_config(&config);
if (esp_err_code == ESP_OK)
esp_err_code = rmt_driver_install(channel, 1024, 0);
if (esp_err_code == ESP_OK)
esp_err_code = rmt_set_memory_owner(channel, RMT_MEM_OWNER_RX);
log_d(" -- %s RMT - CH %d - %d RAM Blocks - pin %d", tx_not_rx?"TX":"RX", channel, buffers, pin);
}
RMT_MUTEX_UNLOCK(channel);
if (esp_err_code == ESP_OK) {
return rmt;
} else {
log_e("RMT failed to initilize.");
return NULL;
}
}