arduino-esp32/cores/esp32/esp32-hal-uart.c
2024-05-15 13:15:28 +02:00

1129 lines
36 KiB
C

// Copyright 2015-2024 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-uart.h"
#if SOC_UART_SUPPORTED
#include "esp32-hal.h"
#include "esp32-hal-periman.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "driver/uart.h"
#include "hal/uart_ll.h"
#include "soc/soc_caps.h"
#include "soc/uart_struct.h"
#include "soc/uart_periph.h"
#include "rom/ets_sys.h"
#include "rom/gpio.h"
#include "driver/gpio.h"
#include "hal/gpio_hal.h"
#include "esp_rom_gpio.h"
static int s_uart_debug_nr = 0; // UART number for debug output
struct uart_struct_t {
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t lock; // UART lock
#endif
uint8_t num; // UART number for IDF driver API
bool has_peek; // flag to indicate that there is a peek byte pending to be read
uint8_t peek_byte; // peek byte that has been read but not consumed
QueueHandle_t uart_event_queue; // export it by some uartGetEventQueue() function
// configuration data:: Arduino API tipical data
int8_t _rxPin, _txPin, _ctsPin, _rtsPin; // UART GPIOs
uint32_t _baudrate, _config; // UART baudrate and config
// UART ESP32 specific data
uint16_t _rx_buffer_size, _tx_buffer_size; // UART RX and TX buffer sizes
bool _inverted; // UART inverted signal
uint8_t _rxfifo_full_thrhd; // UART RX FIFO full threshold
};
#if CONFIG_DISABLE_HAL_LOCKS
#define UART_MUTEX_LOCK()
#define UART_MUTEX_UNLOCK()
static uart_t _uart_bus_array[] = {
{0, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#if SOC_UART_NUM > 1
{1, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#endif
#if SOC_UART_NUM > 2
{2, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#endif
};
#else
#define UART_MUTEX_LOCK() \
if (uart->lock != NULL) \
do { \
} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS)
#define UART_MUTEX_UNLOCK() \
if (uart->lock != NULL) \
xSemaphoreGive(uart->lock)
static uart_t _uart_bus_array[] = {
{NULL, 0, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#if SOC_UART_NUM > 1
{NULL, 1, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#endif
#if SOC_UART_NUM > 2
{NULL, 2, false, 0, NULL, -1, -1, -1, -1, 0, 0, 0, 0, false, 0},
#endif
};
#endif
// Negative Pin Number will keep it unmodified, thus this function can detach individual pins
// This function will also unset the pins in the Peripheral Manager and set the pin to -1 after detaching
static bool _uartDetachPins(uint8_t uart_num, int8_t rxPin, int8_t txPin, int8_t ctsPin, int8_t rtsPin) {
if (uart_num >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use number from 0 to %u", SOC_UART_NUM - 1);
return false;
}
// get UART information
uart_t *uart = &_uart_bus_array[uart_num];
bool retCode = true;
//log_v("detaching UART%d pins: prev,pin RX(%d,%d) TX(%d,%d) CTS(%d,%d) RTS(%d,%d)", uart_num,
// uart->_rxPin, rxPin, uart->_txPin, txPin, uart->_ctsPin, ctsPin, uart->_rtsPin, rtsPin); vTaskDelay(10);
// detaches pins and sets Peripheral Manager and UART information
if (rxPin >= 0 && uart->_rxPin == rxPin && perimanGetPinBusType(rxPin) == ESP32_BUS_TYPE_UART_RX) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rxPin], PIN_FUNC_GPIO);
// avoids causing BREAK in the UART line
if (uart->_inverted) {
esp_rom_gpio_connect_in_signal(GPIO_FUNC_IN_LOW, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), false);
} else {
esp_rom_gpio_connect_in_signal(GPIO_FUNC_IN_HIGH, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), false);
}
uart->_rxPin = -1; // -1 means unassigned/detached
if (!perimanClearPinBus(rxPin)) {
retCode = false;
log_e("UART%d failed to detach RX pin %d", uart_num, rxPin);
}
}
if (txPin >= 0 && uart->_txPin == txPin && perimanGetPinBusType(txPin) == ESP32_BUS_TYPE_UART_TX) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[txPin], PIN_FUNC_GPIO);
esp_rom_gpio_connect_out_signal(txPin, SIG_GPIO_OUT_IDX, false, false);
uart->_txPin = -1; // -1 means unassigned/detached
if (!perimanClearPinBus(txPin)) {
retCode = false;
log_e("UART%d failed to detach TX pin %d", uart_num, txPin);
}
}
if (ctsPin >= 0 && uart->_ctsPin == ctsPin && perimanGetPinBusType(ctsPin) == ESP32_BUS_TYPE_UART_CTS) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[ctsPin], PIN_FUNC_GPIO);
esp_rom_gpio_connect_in_signal(GPIO_FUNC_IN_LOW, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), false);
uart->_ctsPin = -1; // -1 means unassigned/detached
if (!perimanClearPinBus(ctsPin)) {
retCode = false;
log_e("UART%d failed to detach CTS pin %d", uart_num, ctsPin);
}
}
if (rtsPin >= 0 && uart->_rtsPin == rtsPin && perimanGetPinBusType(rtsPin) == ESP32_BUS_TYPE_UART_RTS) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rtsPin], PIN_FUNC_GPIO);
esp_rom_gpio_connect_out_signal(rtsPin, SIG_GPIO_OUT_IDX, false, false);
uart->_rtsPin = -1; // -1 means unassigned/detached
if (!perimanClearPinBus(rtsPin)) {
retCode = false;
log_e("UART%d failed to detach RTS pin %d", uart_num, rtsPin);
}
}
return retCode;
}
// Peripheral Manager detach callback for each specific UART PIN
static bool _uartDetachBus_RX(void *busptr) {
// sanity check - it should never happen
assert(busptr && "_uartDetachBus_RX bus NULL pointer.");
uart_t *bus = (uart_t *)busptr;
return _uartDetachPins(bus->num, bus->_rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
static bool _uartDetachBus_TX(void *busptr) {
// sanity check - it should never happen
assert(busptr && "_uartDetachBus_TX bus NULL pointer.");
uart_t *bus = (uart_t *)busptr;
return _uartDetachPins(bus->num, UART_PIN_NO_CHANGE, bus->_txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
static bool _uartDetachBus_CTS(void *busptr) {
// sanity check - it should never happen
assert(busptr && "_uartDetachBus_CTS bus NULL pointer.");
uart_t *bus = (uart_t *)busptr;
return _uartDetachPins(bus->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, bus->_ctsPin, UART_PIN_NO_CHANGE);
}
static bool _uartDetachBus_RTS(void *busptr) {
// sanity check - it should never happen
assert(busptr && "_uartDetachBus_RTS bus NULL pointer.");
uart_t *bus = (uart_t *)busptr;
return _uartDetachPins(bus->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, bus->_rtsPin);
}
// Attach function for UART
// connects the IO Pad, set Paripheral Manager and internal UART structure data
static bool _uartAttachPins(uint8_t uart_num, int8_t rxPin, int8_t txPin, int8_t ctsPin, int8_t rtsPin) {
if (uart_num >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use number from 0 to %u", SOC_UART_NUM - 1);
return false;
}
// get UART information
uart_t *uart = &_uart_bus_array[uart_num];
//log_v("attaching UART%d pins: prev,new RX(%d,%d) TX(%d,%d) CTS(%d,%d) RTS(%d,%d)", uart_num,
// uart->_rxPin, rxPin, uart->_txPin, txPin, uart->_ctsPin, ctsPin, uart->_rtsPin, rtsPin); vTaskDelay(10);
bool retCode = true;
if (rxPin >= 0) {
// forces a clean detaching from a previous peripheral
if (perimanGetPinBusType(rxPin) != ESP32_BUS_TYPE_INIT) {
perimanClearPinBus(rxPin);
}
// connect RX Pad
bool ret = ESP_OK == uart_set_pin(uart->num, UART_PIN_NO_CHANGE, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
if (ret) {
ret &= perimanSetPinBus(rxPin, ESP32_BUS_TYPE_UART_RX, (void *)uart, uart_num, -1);
if (ret) {
uart->_rxPin = rxPin;
}
}
if (!ret) {
log_e("UART%d failed to attach RX pin %d", uart_num, rxPin);
}
retCode &= ret;
}
if (txPin >= 0) {
// forces a clean detaching from a previous peripheral
if (perimanGetPinBusType(txPin) != ESP32_BUS_TYPE_INIT) {
perimanClearPinBus(txPin);
}
// connect TX Pad
bool ret = ESP_OK == uart_set_pin(uart->num, txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
if (ret) {
ret &= perimanSetPinBus(txPin, ESP32_BUS_TYPE_UART_TX, (void *)uart, uart_num, -1);
if (ret) {
uart->_txPin = txPin;
}
}
if (!ret) {
log_e("UART%d failed to attach TX pin %d", uart_num, txPin);
}
retCode &= ret;
}
if (ctsPin >= 0) {
// forces a clean detaching from a previous peripheral
if (perimanGetPinBusType(ctsPin) != ESP32_BUS_TYPE_INIT) {
perimanClearPinBus(ctsPin);
}
// connect CTS Pad
bool ret = ESP_OK == uart_set_pin(uart->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, ctsPin);
if (ret) {
ret &= perimanSetPinBus(ctsPin, ESP32_BUS_TYPE_UART_CTS, (void *)uart, uart_num, -1);
if (ret) {
uart->_ctsPin = ctsPin;
}
}
if (!ret) {
log_e("UART%d failed to attach CTS pin %d", uart_num, ctsPin);
}
retCode &= ret;
}
if (rtsPin >= 0) {
// forces a clean detaching from a previous peripheral
if (perimanGetPinBusType(rtsPin) != ESP32_BUS_TYPE_INIT) {
perimanClearPinBus(rtsPin);
}
// connect RTS Pad
bool ret = ESP_OK == uart_set_pin(uart->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, rtsPin, UART_PIN_NO_CHANGE);
if (ret) {
ret &= perimanSetPinBus(rtsPin, ESP32_BUS_TYPE_UART_RTS, (void *)uart, uart_num, -1);
if (ret) {
uart->_rtsPin = rtsPin;
}
}
if (!ret) {
log_e("UART%d failed to attach RTS pin %d", uart_num, rtsPin);
}
retCode &= ret;
}
return retCode;
}
// just helper functions
int8_t uart_get_RxPin(uint8_t uart_num) {
return _uart_bus_array[uart_num]._rxPin;
}
int8_t uart_get_TxPin(uint8_t uart_num) {
return _uart_bus_array[uart_num]._txPin;
}
void uart_init_PeriMan(void) {
// set Peripheral Manager deInit Callback for each UART pin
perimanSetBusDeinit(ESP32_BUS_TYPE_UART_RX, _uartDetachBus_RX);
perimanSetBusDeinit(ESP32_BUS_TYPE_UART_TX, _uartDetachBus_TX);
perimanSetBusDeinit(ESP32_BUS_TYPE_UART_CTS, _uartDetachBus_CTS);
perimanSetBusDeinit(ESP32_BUS_TYPE_UART_RTS, _uartDetachBus_RTS);
}
// Routines that take care of UART events will be in the HardwareSerial Class code
void uartGetEventQueue(uart_t *uart, QueueHandle_t *q) {
// passing back NULL for the Queue pointer when UART is not initialized yet
*q = NULL;
if (uart == NULL) {
return;
}
*q = uart->uart_event_queue;
return;
}
bool uartIsDriverInstalled(uart_t *uart) {
if (uart == NULL) {
return false;
}
if (uart_is_driver_installed(uart->num)) {
return true;
}
return false;
}
// Negative Pin Number will keep it unmodified, thus this function can set individual pins
// When pins are changed, it will detach the previous one
bool uartSetPins(uint8_t uart_num, int8_t rxPin, int8_t txPin, int8_t ctsPin, int8_t rtsPin) {
if (uart_num >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use number from 0 to %u", SOC_UART_NUM - 1);
return false;
}
// get UART information
uart_t *uart = &_uart_bus_array[uart_num];
bool retCode = true;
UART_MUTEX_LOCK();
//log_v("setting UART%d pins: prev->new RX(%d->%d) TX(%d->%d) CTS(%d->%d) RTS(%d->%d)", uart_num,
// uart->_rxPin, rxPin, uart->_txPin, txPin, uart->_ctsPin, ctsPin, uart->_rtsPin, rtsPin); vTaskDelay(10);
// First step: detaches all previous UART pins
bool rxPinChanged = rxPin >= 0 && rxPin != uart->_rxPin;
if (rxPinChanged) {
retCode &= _uartDetachPins(uart_num, uart->_rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
bool txPinChanged = txPin >= 0 && txPin != uart->_txPin;
if (txPinChanged) {
retCode &= _uartDetachPins(uart_num, UART_PIN_NO_CHANGE, uart->_txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
bool ctsPinChanged = ctsPin >= 0 && ctsPin != uart->_ctsPin;
if (ctsPinChanged) {
retCode &= _uartDetachPins(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, uart->_ctsPin, UART_PIN_NO_CHANGE);
}
bool rtsPinChanged = rtsPin >= 0 && rtsPin != uart->_rtsPin;
if (rtsPinChanged) {
retCode &= _uartDetachPins(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, uart->_rtsPin);
}
// Second step: attach all UART new pins
if (rxPinChanged) {
retCode &= _uartAttachPins(uart_num, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
if (txPinChanged) {
retCode &= _uartAttachPins(uart_num, UART_PIN_NO_CHANGE, txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
if (ctsPinChanged) {
retCode &= _uartAttachPins(uart->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, ctsPin, UART_PIN_NO_CHANGE);
}
if (rtsPinChanged) {
retCode &= _uartAttachPins(uart->num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, rtsPin);
}
UART_MUTEX_UNLOCK();
if (!retCode) {
log_e("UART%d set pins failed.", uart_num);
}
return retCode;
}
//
bool uartSetHwFlowCtrlMode(uart_t *uart, uart_hw_flowcontrol_t mode, uint8_t threshold) {
if (uart == NULL) {
return false;
}
// IDF will issue corresponding error message when mode or threshold are wrong and prevent crashing
// IDF will check (mode > HW_FLOWCTRL_CTS_RTS || threshold >= SOC_UART_FIFO_LEN)
UART_MUTEX_LOCK();
bool retCode = (ESP_OK == uart_set_hw_flow_ctrl(uart->num, mode, threshold));
UART_MUTEX_UNLOCK();
return retCode;
}
// This helper function will return true if a new IDF UART driver needs to be restarted and false if the current one can continue its execution
bool _testUartBegin(
uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint32_t rx_buffer_size, uint32_t tx_buffer_size, bool inverted,
uint8_t rxfifo_full_thrhd
) {
if (uart_nr >= SOC_UART_NUM) {
return false; // no new driver has to be installed
}
uart_t *uart = &_uart_bus_array[uart_nr];
// verify if is necessary to restart the UART driver
if (uart_is_driver_installed(uart_nr)) {
// some parameters can't be changed unless we end the UART driver
if (uart->_rx_buffer_size != rx_buffer_size || uart->_tx_buffer_size != tx_buffer_size || uart->_inverted != inverted
|| uart->_rxfifo_full_thrhd != rxfifo_full_thrhd) {
return true; // the current IDF UART driver must be terminated and a new driver shall be installed
} else {
return false; // The current IDF UART driver can continue its execution
}
} else {
return true; // no IDF UART driver is running and a new driver shall be installed
}
}
uart_t *uartBegin(
uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint32_t rx_buffer_size, uint32_t tx_buffer_size, bool inverted,
uint8_t rxfifo_full_thrhd
) {
if (uart_nr >= SOC_UART_NUM) {
log_e("UART number is invalid, please use number from 0 to %u", SOC_UART_NUM - 1);
return NULL; // no new driver was installed
}
uart_t *uart = &_uart_bus_array[uart_nr];
log_v("UART%d baud(%ld) Mode(%x) rxPin(%d) txPin(%d)", uart_nr, baudrate, config, rxPin, txPin);
#if !CONFIG_DISABLE_HAL_LOCKS
if (uart->lock == NULL) {
uart->lock = xSemaphoreCreateMutex();
if (uart->lock == NULL) {
log_e("HAL LOCK error.");
return NULL; // no new driver was installed
}
}
#endif
if (uart_is_driver_installed(uart_nr)) {
log_v("UART%d Driver already installed.", uart_nr);
// some parameters can't be changed unless we end the UART driver
if (uart->_rx_buffer_size != rx_buffer_size || uart->_tx_buffer_size != tx_buffer_size || uart->_inverted != inverted
|| uart->_rxfifo_full_thrhd != rxfifo_full_thrhd) {
log_v("UART%d changing buffer sizes or inverted signal or rxfifo_full_thrhd. IDF driver will be restarted", uart_nr);
uartEnd(uart_nr);
} else {
bool retCode = true;
UART_MUTEX_LOCK();
//User may just want to change some parameters, such as baudrate, data length, parity, stop bits or pins
if (uart->_baudrate != baudrate) {
if (ESP_OK != uart_set_baudrate(uart_nr, baudrate)) {
log_e("UART%d changing baudrate failed.", uart_nr);
retCode = false;
} else {
log_v("UART%d changed baudrate to %d", uart_nr, baudrate);
uart->_baudrate = baudrate;
}
}
uart_word_length_t data_bits = (config & 0xc) >> 2;
uart_parity_t parity = config & 0x3;
uart_stop_bits_t stop_bits = (config & 0x30) >> 4;
if (retCode && (uart->_config & 0xc) >> 2 != data_bits) {
if (ESP_OK != uart_set_word_length(uart_nr, data_bits)) {
log_e("UART%d changing data length failed.", uart_nr);
retCode = false;
} else {
log_v("UART%d changed data length to %d", uart_nr, data_bits + 5);
}
}
if (retCode && (uart->_config & 0x3) != parity) {
if (ESP_OK != uart_set_parity(uart_nr, parity)) {
log_e("UART%d changing parity failed.", uart_nr);
retCode = false;
} else {
log_v("UART%d changed parity to %s", uart_nr, parity == 0 ? "NONE" : parity == 2 ? "EVEN" : "ODD");
}
}
if (retCode && (uart->_config & 0xc30) >> 4 != stop_bits) {
if (ESP_OK != uart_set_stop_bits(uart_nr, stop_bits)) {
log_e("UART%d changing stop bits failed.", uart_nr);
retCode = false;
} else {
log_v("UART%d changed stop bits to %d", uart_nr, stop_bits == 3 ? 2 : 1);
}
}
if (retCode) {
uart->_config = config;
}
if (retCode && rxPin > 0 && uart->_rxPin != rxPin) {
retCode &= _uartDetachPins(uart_nr, uart->_rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
retCode &= _uartAttachPins(uart_nr, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
if (!retCode) {
log_e("UART%d changing RX pin failed.", uart_nr);
} else {
log_v("UART%d changed RX pin to %d", uart_nr, rxPin);
}
}
if (retCode && txPin > 0 && uart->_txPin != txPin) {
retCode &= _uartDetachPins(uart_nr, UART_PIN_NO_CHANGE, uart->_txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
retCode &= _uartAttachPins(uart_nr, UART_PIN_NO_CHANGE, txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
if (!retCode) {
log_e("UART%d changing TX pin failed.", uart_nr);
} else {
log_v("UART%d changed TX pin to %d", uart_nr, txPin);
}
}
UART_MUTEX_UNLOCK();
if (retCode) {
// UART driver was already working, just return the uart_t structure, syaing that no new driver was installed
return uart;
}
// if we reach this point, it means that we need to restart the UART driver
uartEnd(uart_nr);
}
} else {
log_v("UART%d not installed. Starting installation", uart_nr);
}
uart_config_t uart_config;
uart_config.data_bits = (config & 0xc) >> 2;
uart_config.parity = (config & 0x3);
uart_config.stop_bits = (config & 0x30) >> 4;
uart_config.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
uart_config.rx_flow_ctrl_thresh = rxfifo_full_thrhd;
uart_config.baud_rate = baudrate;
// CLK_APB for ESP32|S2|S3|C3 -- CLK_PLL_F40M for C2 -- CLK_PLL_F48M for H2 -- CLK_PLL_F80M for C6
uart_config.source_clk = UART_SCLK_DEFAULT;
UART_MUTEX_LOCK();
bool retCode = ESP_OK == uart_driver_install(uart_nr, rx_buffer_size, tx_buffer_size, 20, &(uart->uart_event_queue), 0);
if (retCode) {
retCode &= ESP_OK == uart_param_config(uart_nr, &uart_config);
}
// Is it right or the idea is to swap rx and tx pins?
if (retCode && inverted) {
// invert signal for both Rx and Tx
retCode &= ESP_OK == uart_set_line_inverse(uart_nr, UART_SIGNAL_TXD_INV | UART_SIGNAL_RXD_INV);
}
if (retCode) {
uart->_baudrate = baudrate;
uart->_config = config;
uart->_inverted = inverted;
uart->_rxfifo_full_thrhd = rxfifo_full_thrhd;
uart->_rx_buffer_size = rx_buffer_size;
uart->_tx_buffer_size = tx_buffer_size;
uart->has_peek = false;
uart->peek_byte = 0;
}
UART_MUTEX_UNLOCK();
// uartSetPins detaches previous pins if new ones are used over a previous begin()
if (retCode) {
retCode &= uartSetPins(uart_nr, rxPin, txPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
}
if (!retCode) {
log_e("UART%d initialization error.", uart->num);
uartEnd(uart_nr);
uart = NULL;
} else {
uartFlush(uart);
log_v("UART%d initialization done.", uart->num);
}
return uart; // a new driver was installed
}
// This function code is under testing - for now just keep it here
void uartSetFastReading(uart_t *uart) {
if (uart == NULL) {
return;
}
UART_MUTEX_LOCK();
// override default RX IDF Driver Interrupt - no BREAK, PARITY or OVERFLOW
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT, // only these IRQs - no BREAK, PARITY or OVERFLOW
.rx_timeout_thresh = 1,
.txfifo_empty_intr_thresh = 10,
.rxfifo_full_thresh = 2,
};
ESP_ERROR_CHECK(uart_intr_config(uart->num, &uart_intr));
UART_MUTEX_UNLOCK();
}
bool uartSetRxTimeout(uart_t *uart, uint8_t numSymbTimeout) {
if (uart == NULL) {
return false;
}
UART_MUTEX_LOCK();
bool retCode = (ESP_OK == uart_set_rx_timeout(uart->num, numSymbTimeout));
UART_MUTEX_UNLOCK();
return retCode;
}
bool uartSetRxFIFOFull(uart_t *uart, uint8_t numBytesFIFOFull) {
if (uart == NULL) {
return false;
}
UART_MUTEX_LOCK();
bool retCode = (ESP_OK == uart_set_rx_full_threshold(uart->num, numBytesFIFOFull));
UART_MUTEX_UNLOCK();
return retCode;
}
void uartEnd(uint8_t uart_num) {
if (uart_num >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use number from 0 to %u", SOC_UART_NUM - 1);
return;
}
// get UART information
uart_t *uart = &_uart_bus_array[uart_num];
UART_MUTEX_LOCK();
_uartDetachPins(uart_num, uart->_rxPin, uart->_txPin, uart->_ctsPin, uart->_rtsPin);
if (uart_is_driver_installed(uart_num)) {
uart_driver_delete(uart_num);
}
UART_MUTEX_UNLOCK();
}
void uartSetRxInvert(uart_t *uart, bool invert) {
if (uart == NULL) {
return;
}
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2
// POTENTIAL ISSUE :: original code only set/reset rxd_inv bit
// IDF or LL set/reset the whole inv_mask!
// if (invert)
// ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_RXD_INV));
// else
// ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_INV_DISABLE));
#else
// this implementation is better over IDF API because it only affects RXD
// this is supported in ESP32, ESP32-S2 and ESP32-C3
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
if (invert) {
hw->conf0.rxd_inv = 1;
} else {
hw->conf0.rxd_inv = 0;
}
#endif
}
uint32_t uartAvailable(uart_t *uart) {
if (uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
size_t available;
uart_get_buffered_data_len(uart->num, &available);
if (uart->has_peek) {
available++;
}
UART_MUTEX_UNLOCK();
return available;
}
uint32_t uartAvailableForWrite(uart_t *uart) {
if (uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
uint32_t available = uart_ll_get_txfifo_len(UART_LL_GET_HW(uart->num));
size_t txRingBufferAvailable = 0;
if (ESP_OK == uart_get_tx_buffer_free_size(uart->num, &txRingBufferAvailable)) {
available = txRingBufferAvailable == 0 ? available : txRingBufferAvailable;
}
UART_MUTEX_UNLOCK();
return available;
}
size_t uartReadBytes(uart_t *uart, uint8_t *buffer, size_t size, uint32_t timeout_ms) {
if (uart == NULL || size == 0 || buffer == NULL) {
return 0;
}
size_t bytes_read = 0;
UART_MUTEX_LOCK();
if (uart->has_peek) {
uart->has_peek = false;
*buffer++ = uart->peek_byte;
size--;
bytes_read = 1;
}
if (size > 0) {
int len = uart_read_bytes(uart->num, buffer, size, pdMS_TO_TICKS(timeout_ms));
if (len < 0) {
len = 0; // error reading UART
}
bytes_read += len;
}
UART_MUTEX_UNLOCK();
return bytes_read;
}
// DEPRECATED but the original code will be kepts here as future reference when a final solution
// to the UART driver is defined in the use case of reading byte by byte from UART.
uint8_t uartRead(uart_t *uart) {
if (uart == NULL) {
return 0;
}
uint8_t c = 0;
UART_MUTEX_LOCK();
if (uart->has_peek) {
uart->has_peek = false;
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_PERIOD_MS);
if (len <= 0) { // includes negative return from IDF in case of error
c = 0;
}
}
UART_MUTEX_UNLOCK();
return c;
}
uint8_t uartPeek(uart_t *uart) {
if (uart == NULL) {
return 0;
}
uint8_t c = 0;
UART_MUTEX_LOCK();
if (uart->has_peek) {
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_PERIOD_MS);
if (len <= 0) { // includes negative return from IDF in case of error
c = 0;
} else {
uart->has_peek = true;
uart->peek_byte = c;
}
}
UART_MUTEX_UNLOCK();
return c;
}
void uartWrite(uart_t *uart, uint8_t c) {
if (uart == NULL) {
return;
}
UART_MUTEX_LOCK();
uart_write_bytes(uart->num, &c, 1);
UART_MUTEX_UNLOCK();
}
void uartWriteBuf(uart_t *uart, const uint8_t *data, size_t len) {
if (uart == NULL || data == NULL || !len) {
return;
}
UART_MUTEX_LOCK();
uart_write_bytes(uart->num, data, len);
UART_MUTEX_UNLOCK();
}
void uartFlush(uart_t *uart) {
uartFlushTxOnly(uart, true);
}
void uartFlushTxOnly(uart_t *uart, bool txOnly) {
if (uart == NULL) {
return;
}
UART_MUTEX_LOCK();
while (!uart_ll_is_tx_idle(UART_LL_GET_HW(uart->num)));
if (!txOnly) {
ESP_ERROR_CHECK(uart_flush_input(uart->num));
}
UART_MUTEX_UNLOCK();
}
void uartSetBaudRate(uart_t *uart, uint32_t baud_rate) {
if (uart == NULL) {
return;
}
UART_MUTEX_LOCK();
uint32_t sclk_freq;
if (uart_get_sclk_freq(UART_SCLK_DEFAULT, &sclk_freq) == ESP_OK) {
uart_ll_set_baudrate(UART_LL_GET_HW(uart->num), baud_rate, sclk_freq);
}
uart->_baudrate = baud_rate;
UART_MUTEX_UNLOCK();
}
uint32_t uartGetBaudRate(uart_t *uart) {
uint32_t baud_rate = 0;
uint32_t sclk_freq;
if (uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
if (uart_get_sclk_freq(UART_SCLK_DEFAULT, &sclk_freq) == ESP_OK) {
baud_rate = uart_ll_get_baudrate(UART_LL_GET_HW(uart->num), sclk_freq);
}
UART_MUTEX_UNLOCK();
return baud_rate;
}
static void ARDUINO_ISR_ATTR uart0_write_char(char c) {
while (uart_ll_get_txfifo_len(&UART0) == 0);
uart_ll_write_txfifo(&UART0, (const uint8_t *)&c, 1);
}
#if SOC_UART_NUM > 1
static void ARDUINO_ISR_ATTR uart1_write_char(char c) {
while (uart_ll_get_txfifo_len(&UART1) == 0);
uart_ll_write_txfifo(&UART1, (const uint8_t *)&c, 1);
}
#endif
#if SOC_UART_NUM > 2
static void ARDUINO_ISR_ATTR uart2_write_char(char c) {
while (uart_ll_get_txfifo_len(&UART2) == 0);
uart_ll_write_txfifo(&UART2, (const uint8_t *)&c, 1);
}
#endif
void uart_install_putc() {
switch (s_uart_debug_nr) {
case 0: ets_install_putc1((void (*)(char)) & uart0_write_char); break;
#if SOC_UART_NUM > 1
case 1: ets_install_putc1((void (*)(char)) & uart1_write_char); break;
#endif
#if SOC_UART_NUM > 2
case 2: ets_install_putc1((void (*)(char)) & uart2_write_char); break;
#endif
default: ets_install_putc1(NULL); break;
}
}
// Routines that take care of UART mode in the HardwareSerial Class code
// used to set UART_MODE_RS485_HALF_DUPLEX auto RTS for TXD for ESP32 chips
bool uartSetMode(uart_t *uart, uart_mode_t mode) {
if (uart == NULL || uart->num >= SOC_UART_NUM) {
return false;
}
UART_MUTEX_LOCK();
bool retCode = (ESP_OK == uart_set_mode(uart->num, mode));
UART_MUTEX_UNLOCK();
return retCode;
}
void uartSetDebug(uart_t *uart) {
if (uart == NULL || uart->num >= SOC_UART_NUM) {
s_uart_debug_nr = -1;
} else {
s_uart_debug_nr = uart->num;
}
uart_install_putc();
}
int uartGetDebug() {
return s_uart_debug_nr;
}
int log_printfv(const char *format, va_list arg) {
static char loc_buf[64];
char *temp = loc_buf;
uint32_t len;
va_list copy;
va_copy(copy, arg);
len = vsnprintf(NULL, 0, format, copy);
va_end(copy);
if (len >= sizeof(loc_buf)) {
temp = (char *)malloc(len + 1);
if (temp == NULL) {
return 0;
}
}
/*
// This causes dead locks with logging in specific cases and also with C++ constructors that may send logs
#if !CONFIG_DISABLE_HAL_LOCKS
if(s_uart_debug_nr != -1 && _uart_bus_array[s_uart_debug_nr].lock){
xSemaphoreTake(_uart_bus_array[s_uart_debug_nr].lock, portMAX_DELAY);
}
#endif
*/
#if CONFIG_IDF_TARGET_ESP32C3
vsnprintf(temp, len + 1, format, arg);
ets_printf("%s", temp);
#else
int wlen = vsnprintf(temp, len + 1, format, arg);
for (int i = 0; i < wlen; i++) {
ets_write_char_uart(temp[i]);
}
#endif
/*
// This causes dead locks with logging and also with constructors that may send logs
#if !CONFIG_DISABLE_HAL_LOCKS
if(s_uart_debug_nr != -1 && _uart_bus_array[s_uart_debug_nr].lock){
xSemaphoreGive(_uart_bus_array[s_uart_debug_nr].lock);
}
#endif
*/
if (len >= sizeof(loc_buf)) {
free(temp);
}
// flushes TX - make sure that the log message is completely sent.
if (s_uart_debug_nr != -1) {
while (!uart_ll_is_tx_idle(UART_LL_GET_HW(s_uart_debug_nr)));
}
return len;
}
int log_printf(const char *format, ...) {
int len;
va_list arg;
va_start(arg, format);
len = log_printfv(format, arg);
va_end(arg);
return len;
}
static void log_print_buf_line(const uint8_t *b, size_t len, size_t total_len) {
for (size_t i = 0; i < len; i++) {
log_printf("%s0x%02x,", i ? " " : "", b[i]);
}
if (total_len > 16) {
for (size_t i = len; i < 16; i++) {
log_printf(" ");
}
log_printf(" // ");
} else {
log_printf(" // ");
}
for (size_t i = 0; i < len; i++) {
log_printf("%c", ((b[i] >= 0x20) && (b[i] < 0x80)) ? b[i] : '.');
}
log_printf("\n");
}
void log_print_buf(const uint8_t *b, size_t len) {
if (!len || !b) {
return;
}
for (size_t i = 0; i < len; i += 16) {
if (len > 16) {
log_printf("/* 0x%04X */ ", i);
}
log_print_buf_line(b + i, ((len - i) < 16) ? (len - i) : 16, len);
}
}
/*
* if enough pulses are detected return the minimum high pulse duration + minimum low pulse duration divided by two.
* This equals one bit period. If flag is true the function return immediately, otherwise it waits for enough pulses.
*/
unsigned long uartBaudrateDetect(uart_t *uart, bool flg) {
// Baud rate detection only works for ESP32 and ESP32S2
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
if (uart == NULL) {
return 0;
}
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
while (hw->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num)
if (flg) {
return 0;
}
ets_delay_us(1000);
}
UART_MUTEX_LOCK();
//log_i("lowpulse_min_cnt = %d hightpulse_min_cnt = %d", hw->lowpulse.min_cnt, hw->highpulse.min_cnt);
unsigned long ret = ((hw->lowpulse.min_cnt + hw->highpulse.min_cnt) >> 1);
UART_MUTEX_UNLOCK();
return ret;
#else
return 0;
#endif
}
/*
* To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is
* detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is
* rounded to the closed real baudrate.
*
* ESP32-C3 reports wrong baud rate detection as shown below:
*
* This will help in a future recall for the C3.
* Baud Sent: Baud Read:
* 300 --> 19536
* 2400 --> 19536
* 4800 --> 19536
* 9600 --> 28818
* 19200 --> 57678
* 38400 --> 115440
* 57600 --> 173535
* 115200 --> 347826
* 230400 --> 701754
*
*
*/
void uartStartDetectBaudrate(uart_t *uart) {
if (uart == NULL) {
return;
}
// Baud rate detection only works for ESP32 and ESP32S2
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
hw->auto_baud.glitch_filt = 0x08;
hw->auto_baud.en = 0;
hw->auto_baud.en = 1;
#else
// ESP32-C3 requires further testing
// Baud rate detection returns wrong values
log_e("baud rate detection for this SoC is not supported.");
return;
// Code bellow for C3 kept for future recall
//hw->rx_filt.glitch_filt = 0x08;
//hw->rx_filt.glitch_filt_en = 1;
//hw->conf0.autobaud_en = 0;
//hw->conf0.autobaud_en = 1;
#endif
}
unsigned long uartDetectBaudrate(uart_t *uart) {
if (uart == NULL) {
return 0;
}
// Baud rate detection only works for ESP32 and ESP32S2
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
static bool uartStateDetectingBaudrate = false;
if (!uartStateDetectingBaudrate) {
uartStartDetectBaudrate(uart);
uartStateDetectingBaudrate = true;
}
unsigned long divisor = uartBaudrateDetect(uart, true);
if (!divisor) {
return 0;
}
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
hw->auto_baud.en = 0;
uartStateDetectingBaudrate = false; // Initialize for the next round
unsigned long baudrate = getApbFrequency() / divisor;
//log_i("APB_FREQ = %d\nraw baudrate detected = %d", getApbFrequency(), baudrate);
static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
size_t i;
for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate
{
if (baudrate <= default_rates[i]) {
if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) {
i--;
}
break;
}
}
return default_rates[i];
#else
log_e("baud rate detection this SoC is not supported.");
return 0;
#endif
}
/*
These functions are for testing purpose only and can be used in Arduino Sketches
Those are used in the UART examples
*/
/*
This is intended to make an internal loopback connection using IOMUX
The function uart_internal_loopback() shall be used right after Arduino Serial.begin(...)
This code "replaces" the physical wiring for connecting TX <--> RX in a loopback
*/
// gets the right TX or RX SIGNAL, based on the UART number from gpio_sig_map.h
#if SOC_UART_NUM > 2
#define UART_TX_SIGNAL(uartNumber) (uartNumber == UART_NUM_0 ? U0TXD_OUT_IDX : (uartNumber == UART_NUM_1 ? U1TXD_OUT_IDX : U2TXD_OUT_IDX))
#define UART_RX_SIGNAL(uartNumber) (uartNumber == UART_NUM_0 ? U0RXD_IN_IDX : (uartNumber == UART_NUM_1 ? U1RXD_IN_IDX : U2RXD_IN_IDX))
#else
#define UART_TX_SIGNAL(uartNumber) (uartNumber == UART_NUM_0 ? U0TXD_OUT_IDX : U1TXD_OUT_IDX)
#define UART_RX_SIGNAL(uartNumber) (uartNumber == UART_NUM_0 ? U0RXD_IN_IDX : U1RXD_IN_IDX)
#endif
/*
This function internally binds defined UARTs TX signal with defined RX pin of any UART (same or different).
This creates a loop that lets us receive anything we send on the UART without external wires.
*/
void uart_internal_loopback(uint8_t uartNum, int8_t rxPin) {
if (uartNum > SOC_UART_NUM - 1 || !GPIO_IS_VALID_GPIO(rxPin)) {
return;
}
esp_rom_gpio_connect_out_signal(rxPin, UART_TX_SIGNAL(uartNum), false, false);
}
/*
This is intended to generate BREAK in an UART line
*/
// Forces a BREAK in the line based on SERIAL_8N1 configuration at any baud rate
void uart_send_break(uint8_t uartNum) {
uint32_t currentBaudrate = 0;
uart_get_baudrate(uartNum, &currentBaudrate);
// calculates 10 bits of breaks in microseconds for baudrates up to 500mbps
// This is very sensitive timing... it works fine for SERIAL_8N1
uint32_t breakTime = (uint32_t)(10.0 * (1000000.0 / currentBaudrate));
uart_set_line_inverse(uartNum, UART_SIGNAL_TXD_INV);
esp_rom_delay_us(breakTime);
uart_set_line_inverse(uartNum, UART_SIGNAL_INV_DISABLE);
}
// Sends a buffer and at the end of the stream, it generates BREAK in the line
int uart_send_msg_with_break(uint8_t uartNum, uint8_t *msg, size_t msgSize) {
// 12 bits long BREAK for 8N1
return uart_write_bytes_with_break(uartNum, (const void *)msg, msgSize, 12);
}
#endif /* SOC_UART_SUPPORTED */