arduino-esp32/cores/esp32/esp32-hal-misc.c
Me No Dev 1d895e58e7
fix(xtal): Add a way to change the XTAL frequency for SparkFun ESP32 Thing (#9844)
* fix(xtal): Add a way to change the XTAL frequency

Add support for boards like SparkFun ESP32 Thing that use 26MHz XTAL

* ci(pre-commit): Apply automatic fixes

* feat(dbg): Print the XTAL frequency in the debug report

---------

Co-authored-by: pre-commit-ci-lite[bot] <117423508+pre-commit-ci-lite[bot]@users.noreply.github.com>
2024-06-13 10:26:54 +03:00

405 lines
11 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_attr.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "esp_partition.h"
#include "esp_log.h"
#include "esp_timer.h"
#ifdef CONFIG_APP_ROLLBACK_ENABLE
#include "esp_ota_ops.h"
#endif //CONFIG_APP_ROLLBACK_ENABLE
#ifdef CONFIG_BT_ENABLED
#include "esp_bt.h"
#endif //CONFIG_BT_ENABLED
#include <sys/time.h>
#include "soc/rtc.h"
#if !defined(CONFIG_IDF_TARGET_ESP32C2) && !defined(CONFIG_IDF_TARGET_ESP32C6) && !defined(CONFIG_IDF_TARGET_ESP32H2)
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
#endif
#include "esp_task_wdt.h"
#include "esp32-hal.h"
#include "esp_system.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C2
#include "esp32c2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#if SOC_TEMP_SENSOR_SUPPORTED
#include "driver/temperature_sensor.h"
#endif
#else // ESP32 Before IDF 4.0
#include "rom/rtc.h"
#endif
//Undocumented!!! Get chip temperature in Fahrenheit
//Source: https://github.com/pcbreflux/espressif/blob/master/esp32/arduino/sketchbook/ESP32_int_temp_sensor/ESP32_int_temp_sensor.ino
#ifdef CONFIG_IDF_TARGET_ESP32
uint8_t temprature_sens_read();
float temperatureRead() {
return (temprature_sens_read() - 32) / 1.8;
}
#elif SOC_TEMP_SENSOR_SUPPORTED
static temperature_sensor_handle_t temp_sensor = NULL;
static bool temperatureReadInit() {
static volatile bool initialized = false;
if (!initialized) {
initialized = true;
//Install temperature sensor, expected temp ranger range: 10~50 ℃
temperature_sensor_config_t temp_sensor_config = TEMPERATURE_SENSOR_CONFIG_DEFAULT(10, 50);
if (temperature_sensor_install(&temp_sensor_config, &temp_sensor) != ESP_OK) {
initialized = false;
temp_sensor = NULL;
log_e("temperature_sensor_install failed");
} else if (temperature_sensor_enable(temp_sensor) != ESP_OK) {
temperature_sensor_uninstall(temp_sensor);
initialized = false;
temp_sensor = NULL;
log_e("temperature_sensor_enable failed");
}
}
return initialized;
}
float temperatureRead() {
float result = NAN;
if (temperatureReadInit()) {
if (temperature_sensor_get_celsius(temp_sensor, &result) != ESP_OK) {
log_e("temperature_sensor_get_celsius failed");
}
}
return result;
}
#endif
void __yield() {
vPortYield();
}
void yield() __attribute__((weak, alias("__yield")));
#if CONFIG_AUTOSTART_ARDUINO
extern TaskHandle_t loopTaskHandle;
extern bool loopTaskWDTEnabled;
void enableLoopWDT() {
if (loopTaskHandle != NULL) {
if (esp_task_wdt_add(loopTaskHandle) != ESP_OK) {
log_e("Failed to add loop task to WDT");
} else {
loopTaskWDTEnabled = true;
}
}
}
void disableLoopWDT() {
if (loopTaskHandle != NULL && loopTaskWDTEnabled) {
loopTaskWDTEnabled = false;
if (esp_task_wdt_delete(loopTaskHandle) != ESP_OK) {
log_e("Failed to remove loop task from WDT");
}
}
}
void feedLoopWDT() {
esp_err_t err = esp_task_wdt_reset();
if (err != ESP_OK) {
log_e("Failed to feed WDT! Error: %d", err);
}
}
#endif
void enableCore0WDT() {
TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
if (idle_0 == NULL || esp_task_wdt_add(idle_0) != ESP_OK) {
log_e("Failed to add Core 0 IDLE task to WDT");
}
}
void disableCore0WDT() {
TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
if (idle_0 == NULL || esp_task_wdt_delete(idle_0) != ESP_OK) {
log_e("Failed to remove Core 0 IDLE task from WDT");
}
}
#ifndef CONFIG_FREERTOS_UNICORE
void enableCore1WDT() {
TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
if (idle_1 == NULL || esp_task_wdt_add(idle_1) != ESP_OK) {
log_e("Failed to add Core 1 IDLE task to WDT");
}
}
void disableCore1WDT() {
TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
if (idle_1 == NULL || esp_task_wdt_delete(idle_1) != ESP_OK) {
log_e("Failed to remove Core 1 IDLE task from WDT");
}
}
#endif
BaseType_t xTaskCreateUniversal(
TaskFunction_t pxTaskCode, const char *const pcName, const uint32_t usStackDepth, void *const pvParameters, UBaseType_t uxPriority,
TaskHandle_t *const pxCreatedTask, const BaseType_t xCoreID
) {
#ifndef CONFIG_FREERTOS_UNICORE
if (xCoreID >= 0 && xCoreID < 2) {
return xTaskCreatePinnedToCore(pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask, xCoreID);
} else {
#endif
return xTaskCreate(pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask);
#ifndef CONFIG_FREERTOS_UNICORE
}
#endif
}
unsigned long ARDUINO_ISR_ATTR micros() {
return (unsigned long)(esp_timer_get_time());
}
unsigned long ARDUINO_ISR_ATTR millis() {
return (unsigned long)(esp_timer_get_time() / 1000ULL);
}
void delay(uint32_t ms) {
vTaskDelay(ms / portTICK_PERIOD_MS);
}
void ARDUINO_ISR_ATTR delayMicroseconds(uint32_t us) {
uint64_t m = (uint64_t)esp_timer_get_time();
if (us) {
uint64_t e = (m + us);
if (m > e) { //overflow
while ((uint64_t)esp_timer_get_time() > e) {
NOP();
}
}
while ((uint64_t)esp_timer_get_time() < e) {
NOP();
}
}
}
void initVariant() __attribute__((weak));
void initVariant() {}
void init() __attribute__((weak));
void init() {}
#ifdef CONFIG_APP_ROLLBACK_ENABLE
bool verifyOta() __attribute__((weak));
bool verifyOta() {
return true;
}
bool verifyRollbackLater() __attribute__((weak));
bool verifyRollbackLater() {
return false;
}
#endif
#ifdef CONFIG_BT_ENABLED
#if CONFIG_IDF_TARGET_ESP32
//overwritten in esp32-hal-bt.c
bool btInUse() __attribute__((weak));
bool btInUse() {
return false;
}
#else
//from esp32-hal-bt.c
extern bool btInUse();
#endif
#endif
void initArduino() {
//init proper ref tick value for PLL (uncomment if REF_TICK is different than 1MHz)
//ESP_REG(APB_CTRL_PLL_TICK_CONF_REG) = APB_CLK_FREQ / REF_CLK_FREQ - 1;
#if CONFIG_SPIRAM_SUPPORT || CONFIG_SPIRAM
psramInit();
#endif
#ifdef CONFIG_APP_ROLLBACK_ENABLE
if (!verifyRollbackLater()) {
const esp_partition_t *running = esp_ota_get_running_partition();
esp_ota_img_states_t ota_state;
if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) {
if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
if (verifyOta()) {
esp_ota_mark_app_valid_cancel_rollback();
} else {
log_e("OTA verification failed! Start rollback to the previous version ...");
esp_ota_mark_app_invalid_rollback_and_reboot();
}
}
}
}
#endif
esp_log_level_set("*", CONFIG_LOG_DEFAULT_LEVEL);
esp_err_t err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES || err == ESP_ERR_NVS_NEW_VERSION_FOUND) {
const esp_partition_t *partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_NVS, NULL);
if (partition != NULL) {
err = esp_partition_erase_range(partition, 0, partition->size);
if (!err) {
err = nvs_flash_init();
} else {
log_e("Failed to format the broken NVS partition!");
}
} else {
log_e("Could not find NVS partition");
}
}
if (err) {
log_e("Failed to initialize NVS! Error: %u", err);
}
#ifdef CONFIG_BT_ENABLED
if (!btInUse()) {
esp_bt_controller_mem_release(ESP_BT_MODE_BTDM);
}
#endif
init();
initVariant();
}
//used by hal log
const char *ARDUINO_ISR_ATTR pathToFileName(const char *path) {
size_t i = 0;
size_t pos = 0;
char *p = (char *)path;
while (*p) {
i++;
if (*p == '/' || *p == '\\') {
pos = i;
}
p++;
}
return path + pos;
}
#include "esp_rom_sys.h"
#include "esp_debug_helpers.h"
#if CONFIG_IDF_TARGET_ARCH_XTENSA
#include "esp_cpu_utils.h"
#else
#include "riscv/rvruntime-frames.h"
#endif
#include "esp_memory_utils.h"
#include "esp_private/panic_internal.h"
static arduino_panic_handler_t _panic_handler = NULL;
static void *_panic_handler_arg = NULL;
void set_arduino_panic_handler(arduino_panic_handler_t handler, void *arg) {
_panic_handler = handler;
_panic_handler_arg = arg;
}
arduino_panic_handler_t get_arduino_panic_handler(void) {
return _panic_handler;
}
void *get_arduino_panic_handler_arg(void) {
return _panic_handler_arg;
}
static void handle_custom_backtrace(panic_info_t *info) {
arduino_panic_info_t p_info;
p_info.reason = info->reason;
p_info.core = info->core;
p_info.pc = info->addr;
p_info.backtrace_len = 0;
p_info.backtrace_corrupt = false;
p_info.backtrace_continues = false;
#if CONFIG_IDF_TARGET_ARCH_XTENSA
XtExcFrame *xt_frame = (XtExcFrame *)info->frame;
esp_backtrace_frame_t stk_frame = {.pc = xt_frame->pc, .sp = xt_frame->a1, .next_pc = xt_frame->a0, .exc_frame = xt_frame};
uint32_t i = 100, pc_ptr = esp_cpu_process_stack_pc(stk_frame.pc);
p_info.backtrace[p_info.backtrace_len++] = pc_ptr;
bool corrupted = !(esp_stack_ptr_is_sane(stk_frame.sp) && (esp_ptr_executable((void *)esp_cpu_process_stack_pc(stk_frame.pc)) ||
/* Ignore the first corrupted PC in case of InstrFetchProhibited */
(stk_frame.exc_frame && ((XtExcFrame *)stk_frame.exc_frame)->exccause == EXCCAUSE_INSTR_PROHIBITED)));
while (i-- > 0 && stk_frame.next_pc != 0 && !corrupted) {
if (!esp_backtrace_get_next_frame(&stk_frame)) {
corrupted = true;
}
pc_ptr = esp_cpu_process_stack_pc(stk_frame.pc);
if (esp_ptr_executable((void *)pc_ptr)) {
p_info.backtrace[p_info.backtrace_len++] = pc_ptr;
if (p_info.backtrace_len == 60) {
break;
}
}
}
if (corrupted) {
p_info.backtrace_corrupt = true;
} else if (stk_frame.next_pc != 0) {
p_info.backtrace_continues = true;
}
#elif CONFIG_IDF_TARGET_ARCH_RISCV
uint32_t sp = (uint32_t)((RvExcFrame *)info->frame)->sp;
p_info.backtrace[p_info.backtrace_len++] = sp;
uint32_t *spptr = (uint32_t *)(sp);
for (int i = 0; i < 256; i++) {
if (esp_ptr_executable((void *)spptr[i])) {
p_info.backtrace[p_info.backtrace_len++] = spptr[i];
if (p_info.backtrace_len == 60) {
if (i < 255) {
p_info.backtrace_continues = true;
}
break;
}
}
}
#endif
_panic_handler(&p_info, _panic_handler_arg);
}
void __real_esp_panic_handler(panic_info_t *);
void __wrap_esp_panic_handler(panic_info_t *info) {
if (_panic_handler != NULL) {
handle_custom_backtrace(info);
}
__real_esp_panic_handler(info);
}