arduino-esp32/cores/esp32/esp32-hal-i2c.c
Me No Dev 2c4ce95e16
fix(i2c): Ensure that semaphore is properly given if init fails (#10313)
Currently code can return before semaphore is given, which can cause the bus to lock. Change makes sure that it's properly given in case of failure.
2024-09-10 16:18:16 +03:00

418 lines
12 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-i2c.h"
#if SOC_I2C_SUPPORTED
#include "esp32-hal.h"
#if !CONFIG_DISABLE_HAL_LOCKS
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#endif
#include "esp_attr.h"
#include "esp_system.h"
#include "soc/soc_caps.h"
#include "soc/i2c_periph.h"
#include "hal/i2c_hal.h"
#include "hal/i2c_ll.h"
#include "driver/i2c.h"
#include "esp32-hal-periman.h"
#if SOC_I2C_SUPPORT_APB || SOC_I2C_SUPPORT_XTAL
#include "esp_private/esp_clk.h"
#endif
#if SOC_I2C_SUPPORT_RTC
#include "clk_ctrl_os.h"
#endif
typedef volatile struct {
bool initialized;
uint32_t frequency;
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t lock;
#endif
int8_t scl;
int8_t sda;
} i2c_bus_t;
static i2c_bus_t bus[SOC_I2C_NUM];
static bool i2cDetachBus(void *bus_i2c_num) {
uint8_t i2c_num = (int)bus_i2c_num - 1;
if (!bus[i2c_num].initialized) {
return true;
}
esp_err_t err = i2cDeinit(i2c_num);
if (err != ESP_OK) {
log_e("i2cDeinit failed with error: %d", err);
return false;
}
return true;
}
bool i2cIsInit(uint8_t i2c_num) {
if (i2c_num >= SOC_I2C_NUM) {
return false;
}
return bus[i2c_num].initialized;
}
esp_err_t i2cInit(uint8_t i2c_num, int8_t sda, int8_t scl, uint32_t frequency) {
esp_err_t ret = ESP_OK;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
if (bus[i2c_num].lock == NULL) {
bus[i2c_num].lock = xSemaphoreCreateMutex();
if (bus[i2c_num].lock == NULL) {
log_e("xSemaphoreCreateMutex failed");
return ESP_ERR_NO_MEM;
}
}
//acquire lock
if (xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return ESP_FAIL;
}
#endif
if (bus[i2c_num].initialized) {
log_e("bus is already initialized");
ret = ESP_FAIL;
goto init_fail;
}
if (!frequency) {
frequency = 100000UL;
} else if (frequency > 1000000UL) {
frequency = 1000000UL;
}
perimanSetBusDeinit(ESP32_BUS_TYPE_I2C_MASTER_SDA, i2cDetachBus);
perimanSetBusDeinit(ESP32_BUS_TYPE_I2C_MASTER_SCL, i2cDetachBus);
if (!perimanClearPinBus(sda) || !perimanClearPinBus(scl)) {
ret = ESP_FAIL;
goto init_fail;
}
log_i("Initializing I2C Master: sda=%d scl=%d freq=%d", sda, scl, frequency);
i2c_config_t conf = {};
conf.mode = I2C_MODE_MASTER;
conf.scl_io_num = (gpio_num_t)scl;
conf.sda_io_num = (gpio_num_t)sda;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = frequency;
conf.clk_flags = I2C_SCLK_SRC_FLAG_FOR_NOMAL; //Any one clock source that is available for the specified frequency may be chosen
ret = i2c_param_config((i2c_port_t)i2c_num, &conf);
if (ret != ESP_OK) {
log_e("i2c_param_config failed");
} else {
ret = i2c_driver_install((i2c_port_t)i2c_num, conf.mode, 0, 0, 0);
if (ret != ESP_OK) {
log_e("i2c_driver_install failed");
} else {
bus[i2c_num].initialized = true;
bus[i2c_num].frequency = frequency;
bus[i2c_num].scl = scl;
bus[i2c_num].sda = sda;
//Clock Stretching Timeout: 20b:esp32, 5b:esp32-c3, 24b:esp32-s2
i2c_set_timeout((i2c_port_t)i2c_num, I2C_LL_MAX_TIMEOUT);
if (!perimanSetPinBus(sda, ESP32_BUS_TYPE_I2C_MASTER_SDA, (void *)(i2c_num + 1), i2c_num, -1)
|| !perimanSetPinBus(scl, ESP32_BUS_TYPE_I2C_MASTER_SCL, (void *)(i2c_num + 1), i2c_num, -1)) {
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock so that i2cDetachBus can execute i2cDeinit
xSemaphoreGive(bus[i2c_num].lock);
#endif
i2cDetachBus((void *)(i2c_num + 1));
return ESP_FAIL;
}
}
}
init_fail:
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cDeinit(uint8_t i2c_num) {
esp_err_t err = ESP_FAIL;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if (bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return err;
}
#endif
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
} else {
err = i2c_driver_delete((i2c_port_t)i2c_num);
if (err == ESP_OK) {
bus[i2c_num].initialized = false;
perimanClearPinBus(bus[i2c_num].scl);
perimanClearPinBus(bus[i2c_num].sda);
bus[i2c_num].scl = -1;
bus[i2c_num].sda = -1;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return err;
}
esp_err_t i2cWrite(uint8_t i2c_num, uint16_t address, const uint8_t *buff, size_t size, uint32_t timeOutMillis) {
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = NULL;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if (bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return ret;
}
#endif
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
goto end;
}
//short implementation does not support zero size writes (example when scanning) PR in IDF?
//ret = i2c_master_write_to_device((i2c_port_t)i2c_num, address, buff, size, timeOutMillis / portTICK_PERIOD_MS);
ret = ESP_OK;
uint8_t cmd_buff[I2C_LINK_RECOMMENDED_SIZE(1)] = {0};
cmd = i2c_cmd_link_create_static(cmd_buff, I2C_LINK_RECOMMENDED_SIZE(1));
ret = i2c_master_start(cmd);
if (ret != ESP_OK) {
goto end;
}
ret = i2c_master_write_byte(cmd, (address << 1) | I2C_MASTER_WRITE, true);
if (ret != ESP_OK) {
goto end;
}
if (size) {
ret = i2c_master_write(cmd, buff, size, true);
if (ret != ESP_OK) {
goto end;
}
}
ret = i2c_master_stop(cmd);
if (ret != ESP_OK) {
goto end;
}
ret = i2c_master_cmd_begin((i2c_port_t)i2c_num, cmd, timeOutMillis / portTICK_PERIOD_MS);
end:
if (cmd != NULL) {
i2c_cmd_link_delete_static(cmd);
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cRead(uint8_t i2c_num, uint16_t address, uint8_t *buff, size_t size, uint32_t timeOutMillis, size_t *readCount) {
esp_err_t ret = ESP_FAIL;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if (bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return ret;
}
#endif
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
} else {
ret = i2c_master_read_from_device((i2c_port_t)i2c_num, address, buff, size, timeOutMillis / portTICK_PERIOD_MS);
if (ret == ESP_OK) {
*readCount = size;
} else {
*readCount = 0;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cWriteReadNonStop(
uint8_t i2c_num, uint16_t address, const uint8_t *wbuff, size_t wsize, uint8_t *rbuff, size_t rsize, uint32_t timeOutMillis, size_t *readCount
) {
esp_err_t ret = ESP_FAIL;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if (bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return ret;
}
#endif
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
} else {
ret = i2c_master_write_read_device((i2c_port_t)i2c_num, address, wbuff, wsize, rbuff, rsize, timeOutMillis / portTICK_PERIOD_MS);
if (ret == ESP_OK) {
*readCount = rsize;
} else {
*readCount = 0;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cSetClock(uint8_t i2c_num, uint32_t frequency) {
esp_err_t ret = ESP_FAIL;
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if (bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE) {
log_e("could not acquire lock");
return ret;
}
#endif
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
goto end;
}
if (bus[i2c_num].frequency == frequency) {
ret = ESP_OK;
goto end;
}
if (!frequency) {
frequency = 100000UL;
} else if (frequency > 1000000UL) {
frequency = 1000000UL;
}
typedef struct {
soc_module_clk_t clk; /*!< I2C source clock */
uint32_t clk_freq; /*!< I2C source clock frequency */
} i2c_clk_alloc_t;
typedef enum {
I2C_SCLK_DEFAULT = 0, /*!< I2C source clock not selected*/
#if SOC_I2C_SUPPORT_APB
I2C_SCLK_APB, /*!< I2C source clock from APB, 80M*/
#endif
#if SOC_I2C_SUPPORT_XTAL
I2C_SCLK_XTAL, /*!< I2C source clock from XTAL, 40M */
#endif
#if SOC_I2C_SUPPORT_RTC
I2C_SCLK_RTC, /*!< I2C source clock from 8M RTC, 8M */
#endif
#if SOC_I2C_SUPPORT_REF_TICK
I2C_SCLK_REF_TICK, /*!< I2C source clock from REF_TICK, 1M */
#endif
I2C_SCLK_MAX,
} i2c_sclk_t;
// i2c clock characteristic, The order is the same as i2c_sclk_t.
i2c_clk_alloc_t i2c_clk_alloc[I2C_SCLK_MAX] = {
{0, 0},
#if SOC_I2C_SUPPORT_APB
{SOC_MOD_CLK_APB, esp_clk_apb_freq()}, /*!< I2C APB clock characteristic*/
#endif
#if SOC_I2C_SUPPORT_XTAL
{SOC_MOD_CLK_XTAL, esp_clk_xtal_freq()}, /*!< I2C XTAL characteristic*/
#endif
#if SOC_I2C_SUPPORT_RTC
{SOC_MOD_CLK_RC_FAST, periph_rtc_dig_clk8m_get_freq()}, /*!< I2C 20M RTC characteristic*/
#endif
#if SOC_I2C_SUPPORT_REF_TICK
{SOC_MOD_CLK_REF_TICK, REF_CLK_FREQ}, /*!< I2C REF_TICK characteristic*/
#endif
};
i2c_sclk_t src_clk = I2C_SCLK_DEFAULT;
ret = ESP_OK;
for (i2c_sclk_t clk = I2C_SCLK_DEFAULT + 1; clk < I2C_SCLK_MAX; clk++) {
#if CONFIG_IDF_TARGET_ESP32S3
if (clk == I2C_SCLK_RTC) { // RTC clock for s3 is inaccessible now.
continue;
}
#endif
if (frequency <= i2c_clk_alloc[clk].clk_freq) {
src_clk = clk;
break;
}
}
if (src_clk == I2C_SCLK_DEFAULT || src_clk == I2C_SCLK_MAX) {
log_e("clock source could not be selected");
ret = ESP_FAIL;
} else {
i2c_hal_context_t hal;
hal.dev = I2C_LL_GET_HW(i2c_num);
#if SOC_I2C_SUPPORT_RTC
if (src_clk == I2C_SCLK_RTC) {
periph_rtc_dig_clk8m_enable();
}
#endif
i2c_hal_set_bus_timing(&(hal), frequency, i2c_clk_alloc[src_clk].clk, i2c_clk_alloc[src_clk].clk_freq);
bus[i2c_num].frequency = frequency;
//Clock Stretching Timeout: 20b:esp32, 5b:esp32-c3, 24b:esp32-s2
i2c_set_timeout((i2c_port_t)i2c_num, I2C_LL_MAX_TIMEOUT);
}
end:
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cGetClock(uint8_t i2c_num, uint32_t *frequency) {
if (i2c_num >= SOC_I2C_NUM) {
return ESP_ERR_INVALID_ARG;
}
if (!bus[i2c_num].initialized) {
log_e("bus is not initialized");
return ESP_FAIL;
}
*frequency = bus[i2c_num].frequency;
return ESP_OK;
}
#endif /* SOC_I2C_SUPPORTED */