Add v6 support to IPAddress to match ArduinoCore-API (#7174)

* feat(ipaddress): add support for ipv6 type, following arduinocore api

* feat(ipaddress): align with latest arduinocore api

---------

Co-authored-by: Me No Dev <me-no-dev@users.noreply.github.com>
This commit is contained in:
Sly Gryphon 2023-12-18 22:19:12 +10:00 committed by GitHub
parent 71b1d767af
commit 44f83b0455
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 303 additions and 42 deletions

View File

@ -20,78 +20,244 @@
#include <Arduino.h>
#include <IPAddress.h>
#include <Print.h>
#include <StreamString.h>
IPAddress::IPAddress()
IPAddress::IPAddress() : IPAddress(IPv4) {}
IPAddress::IPAddress(IPType ip_type)
{
_address.dword = 0;
_type = ip_type;
memset(_address.bytes, 0, sizeof(_address.bytes));
}
IPAddress::IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet)
{
_address.bytes[0] = first_octet;
_address.bytes[1] = second_octet;
_address.bytes[2] = third_octet;
_address.bytes[3] = fourth_octet;
_type = IPv4;
memset(_address.bytes, 0, sizeof(_address.bytes));
_address.bytes[IPADDRESS_V4_BYTES_INDEX] = first_octet;
_address.bytes[IPADDRESS_V4_BYTES_INDEX + 1] = second_octet;
_address.bytes[IPADDRESS_V4_BYTES_INDEX + 2] = third_octet;
_address.bytes[IPADDRESS_V4_BYTES_INDEX + 3] = fourth_octet;
}
IPAddress::IPAddress(uint8_t o1, uint8_t o2, uint8_t o3, uint8_t o4, uint8_t o5, uint8_t o6, uint8_t o7, uint8_t o8, uint8_t o9, uint8_t o10, uint8_t o11, uint8_t o12, uint8_t o13, uint8_t o14, uint8_t o15, uint8_t o16) {
_type = IPv6;
_address.bytes[0] = o1;
_address.bytes[1] = o2;
_address.bytes[2] = o3;
_address.bytes[3] = o4;
_address.bytes[4] = o5;
_address.bytes[5] = o6;
_address.bytes[6] = o7;
_address.bytes[7] = o8;
_address.bytes[8] = o9;
_address.bytes[9] = o10;
_address.bytes[10] = o11;
_address.bytes[11] = o12;
_address.bytes[12] = o13;
_address.bytes[13] = o14;
_address.bytes[14] = o15;
_address.bytes[15] = o16;
}
IPAddress::IPAddress(uint32_t address)
{
_address.dword = address;
// IPv4 only
_type = IPv4;
memset(_address.bytes, 0, sizeof(_address.bytes));
_address.dword[IPADDRESS_V4_DWORD_INDEX] = address;
// NOTE on conversion/comparison and uint32_t:
// These conversions are host platform dependent.
// There is a defined integer representation of IPv4 addresses,
// based on network byte order (will be the value on big endian systems),
// e.g. http://2398766798 is the same as http://142.250.70.206,
// However on little endian systems the octets 0x83, 0xFA, 0x46, 0xCE,
// in that order, will form the integer (uint32_t) 3460758158 .
}
IPAddress::IPAddress(const uint8_t *address)
IPAddress::IPAddress(const uint8_t *address) : IPAddress(IPv4, address) {}
IPAddress::IPAddress(IPType ip_type, const uint8_t *address)
{
memcpy(_address.bytes, address, sizeof(_address.bytes));
_type = ip_type;
if (ip_type == IPv4) {
memset(_address.bytes, 0, sizeof(_address.bytes));
memcpy(&_address.bytes[IPADDRESS_V4_BYTES_INDEX], address, sizeof(uint32_t));
} else {
memcpy(_address.bytes, address, sizeof(_address.bytes));
}
}
IPAddress::IPAddress(const char *address)
{
fromString(address);
}
IPAddress& IPAddress::operator=(const uint8_t *address)
{
memcpy(_address.bytes, address, sizeof(_address.bytes));
// IPv4 only conversion from byte pointer
_type = IPv4;
memset(_address.bytes, 0, sizeof(_address.bytes));
memcpy(&_address.bytes[IPADDRESS_V4_BYTES_INDEX], address, sizeof(uint32_t));
return *this;
}
IPAddress& IPAddress::operator=(const char *address)
{
fromString(address);
return *this;
}
IPAddress& IPAddress::operator=(uint32_t address)
{
_address.dword = address;
// IPv4 conversion
// See note on conversion/comparison and uint32_t
_type = IPv4;
memset(_address.bytes, 0, sizeof(_address.bytes));
_address.dword[IPADDRESS_V4_DWORD_INDEX] = address;
return *this;
}
bool IPAddress::operator==(const IPAddress& addr) const
{
return (addr._type == _type)
&& (memcmp(addr._address.bytes, _address.bytes, sizeof(_address.bytes)) == 0);
}
bool IPAddress::operator==(const uint8_t* addr) const
{
return memcmp(addr, _address.bytes, sizeof(_address.bytes)) == 0;
// IPv4 only comparison to byte pointer
// Can't support IPv6 as we know our type, but not the length of the pointer
return _type == IPv4 && memcmp(addr, &_address.bytes[IPADDRESS_V4_BYTES_INDEX], sizeof(uint32_t)) == 0;
}
uint8_t IPAddress::operator[](int index) const {
if (_type == IPv4) {
return _address.bytes[IPADDRESS_V4_BYTES_INDEX + index];
}
return _address.bytes[index];
}
uint8_t& IPAddress::operator[](int index) {
if (_type == IPv4) {
return _address.bytes[IPADDRESS_V4_BYTES_INDEX + index];
}
return _address.bytes[index];
}
size_t IPAddress::printTo(Print& p) const
{
size_t n = 0;
for(int i = 0; i < 3; i++) {
n += p.print(_address.bytes[i], DEC);
if (_type == IPv6) {
// IPv6 IETF canonical format: compress left-most longest run of two or more zero fields, lower case
int8_t longest_start = -1;
int8_t longest_length = 1;
int8_t current_start = -1;
int8_t current_length = 0;
for (int8_t f = 0; f < 8; f++) {
if (_address.bytes[f * 2] == 0 && _address.bytes[f * 2 + 1] == 0) {
if (current_start == -1) {
current_start = f;
current_length = 1;
} else {
current_length++;
}
if (current_length > longest_length) {
longest_start = current_start;
longest_length = current_length;
}
} else {
current_start = -1;
}
}
for (int f = 0; f < 8; f++) {
if (f < longest_start || f >= longest_start + longest_length) {
uint8_t c1 = _address.bytes[f * 2] >> 4;
uint8_t c2 = _address.bytes[f * 2] & 0xf;
uint8_t c3 = _address.bytes[f * 2 + 1] >> 4;
uint8_t c4 = _address.bytes[f * 2 + 1] & 0xf;
if (c1 > 0) {
n += p.print((char)(c1 < 10 ? '0' + c1 : 'a' + c1 - 10));
}
if (c1 > 0 || c2 > 0) {
n += p.print((char)(c2 < 10 ? '0' + c2 : 'a' + c2 - 10));
}
if (c1 > 0 || c2 > 0 || c3 > 0) {
n += p.print((char)(c3 < 10 ? '0' + c3 : 'a' + c3 - 10));
}
n += p.print((char)(c4 < 10 ? '0' + c4 : 'a' + c4 - 10));
if (f < 7) {
n += p.print(':');
}
} else if (f == longest_start) {
if (longest_start == 0) {
n += p.print(':');
}
n += p.print(':');
}
}
return n;
}
// IPv4
for (int i =0; i < 3; i++)
{
n += p.print(_address.bytes[IPADDRESS_V4_BYTES_INDEX + i], DEC);
n += p.print('.');
}
n += p.print(_address.bytes[3], DEC);
n += p.print(_address.bytes[IPADDRESS_V4_BYTES_INDEX + 3], DEC);
return n;
}
String IPAddress::toString4() const
{
char szRet[16];
snprintf(szRet, sizeof(szRet), "%u.%u.%u.%u", _address.bytes[IPADDRESS_V4_BYTES_INDEX], _address.bytes[IPADDRESS_V4_BYTES_INDEX + 1], _address.bytes[IPADDRESS_V4_BYTES_INDEX + 2], _address.bytes[IPADDRESS_V4_BYTES_INDEX + 3]);
return String(szRet);
}
String IPAddress::toString6() const
{
StreamString s;
s.reserve(40);
printTo(s);
return s;
}
String IPAddress::toString() const
{
char szRet[16];
sprintf(szRet,"%u.%u.%u.%u", _address.bytes[0], _address.bytes[1], _address.bytes[2], _address.bytes[3]);
return String(szRet);
if (_type == IPv4) {
return toString4();
} else {
return toString6();
}
}
bool IPAddress::fromString(const char *address)
{
if (!fromString4(address))
{
return fromString6(address);
}
return true;
}
bool IPAddress::fromString4(const char *address)
{
// TODO: add support for "a", "a.b", "a.b.c" formats
uint16_t acc = 0; // Accumulator
int16_t acc = -1; // Accumulator
uint8_t dots = 0;
memset(_address.bytes, 0, sizeof(_address.bytes));
while (*address)
{
char c = *address++;
if (c >= '0' && c <= '9')
{
acc = acc * 10 + (c - '0');
acc = (acc < 0) ? (c - '0') : acc * 10 + (c - '0');
if (acc > 255) {
// Value out of [0..255] range
return false;
@ -100,11 +266,15 @@ bool IPAddress::fromString(const char *address)
else if (c == '.')
{
if (dots == 3) {
// Too much dots (there must be 3 dots)
// Too many dots (there must be 3 dots)
return false;
}
_address.bytes[dots++] = acc;
acc = 0;
if (acc < 0) {
/* No value between dots, e.g. '1..' */
return false;
}
_address.bytes[IPADDRESS_V4_BYTES_INDEX + dots++] = acc;
acc = -1;
}
else
{
@ -117,7 +287,80 @@ bool IPAddress::fromString(const char *address)
// Too few dots (there must be 3 dots)
return false;
}
_address.bytes[3] = acc;
if (acc < 0) {
/* No value between dots, e.g. '1..' */
return false;
}
_address.bytes[IPADDRESS_V4_BYTES_INDEX + 3] = acc;
_type = IPv4;
return true;
}
bool IPAddress::fromString6(const char *address) {
uint32_t acc = 0; // Accumulator
int colons = 0, double_colons = -1;
while (*address)
{
char c = tolower(*address++);
if (isalnum(c) && c <= 'f') {
if (c >= 'a')
c -= 'a' - '0' - 10;
acc = acc * 16 + (c - '0');
if (acc > 0xffff)
// Value out of range
return false;
}
else if (c == ':') {
if (*address == ':') {
if (double_colons >= 0) {
// :: allowed once
return false;
}
if (*address != '\0' && *(address + 1) == ':') {
// ::: not allowed
return false;
}
// remember location
double_colons = colons + !!acc;
address++;
} else if (*address == '\0') {
// can't end with a single colon
return false;
}
if (colons == 7)
// too many separators
return false;
_address.bytes[colons * 2] = acc >> 8;
_address.bytes[colons * 2 + 1] = acc & 0xff;
colons++;
acc = 0;
}
else
// Invalid char
return false;
}
if (double_colons == -1 && colons != 7) {
// Too few separators
return false;
}
if (double_colons > -1 && colons > 6) {
// Too many segments (double colon must be at least one zero field)
return false;
}
_address.bytes[colons * 2] = acc >> 8;
_address.bytes[colons * 2 + 1] = acc & 0xff;
colons++;
if (double_colons != -1) {
for (int i = colons * 2 - double_colons * 2 - 1; i >= 0; i--)
_address.bytes[16 - colons * 2 + double_colons * 2 + i] = _address.bytes[double_colons * 2 + i];
for (int i = double_colons * 2; i < 16 - colons * 2 + double_colons * 2; i++)
_address.bytes[i] = 0;
}
_type = IPv6;
return true;
}

View File

@ -26,13 +26,23 @@
// A class to make it easier to handle and pass around IP addresses
#define IPADDRESS_V4_BYTES_INDEX 12
#define IPADDRESS_V4_DWORD_INDEX 3
enum IPType
{
IPv4,
IPv6
};
class IPAddress: public Printable
{
private:
union {
uint8_t bytes[4]; // IPv4 address
uint32_t dword;
uint8_t bytes[16];
uint32_t dword[4];
} _address;
IPType _type;
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
@ -40,57 +50,65 @@ private:
// stored.
uint8_t* raw_address()
{
return _address.bytes;
return _type == IPv4 ? &_address.bytes[IPADDRESS_V4_BYTES_INDEX] : _address.bytes;
}
public:
// Constructors
IPAddress();
IPAddress(IPType ip_type);
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint8_t o1, uint8_t o2, uint8_t o3, uint8_t o4, uint8_t o5, uint8_t o6, uint8_t o7, uint8_t o8, uint8_t o9, uint8_t o10, uint8_t o11, uint8_t o12, uint8_t o13, uint8_t o14, uint8_t o15, uint8_t o16);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
IPAddress(IPType ip_type, const uint8_t *address);
// If IPv4 fails tries IPv6 see fromString function
IPAddress(const char *address);
virtual ~IPAddress() {}
bool fromString(const char *address);
bool fromString(const String &address) { return fromString(address.c_str()); }
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
// Overloaded cast operator to allow IPAddress objects to be used where a
// uint32_t is expected
operator uint32_t() const
{
return _address.dword;
}
bool operator==(const IPAddress& addr) const
{
return _address.dword == addr._address.dword;
return _type == IPv4 ? _address.dword[IPADDRESS_V4_DWORD_INDEX] : 0;
}
bool operator==(const IPAddress& addr) const;
bool operator==(const uint8_t* addr) const;
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const
{
return _address.bytes[index];
}
uint8_t& operator[](int index)
{
return _address.bytes[index];
}
uint8_t operator[](int index) const;
uint8_t& operator[](int index);
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
// If IPv4 fails tries IPv6 see fromString function
IPAddress& operator=(const char *address);
virtual size_t printTo(Print& p) const;
String toString() const;
IPType type() const { return _type; }
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
protected:
bool fromString4(const char *address);
bool fromString6(const char *address);
String toString4() const;
String toString6() const;
};
// changed to extern because const declaration creates copies in BSS of INADDR_NONE for each CPP unit that includes it
extern IPAddress INADDR_NONE;
extern IPAddress IN6ADDR_ANY;
#endif